Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 24(6): 791-7, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10447464

ABSTRACT

Lathyrism is a non-progressive motor neuron disease produced by consumption of the excitatory amino acid, 3-N-oxalyl-L-2,3-diaminopropanoic acid (beta-ODAP). To learn more about the mechanisms underlying Lathyrism three structural analogs of beta-ODAP were synthesized. Carboxymethyl-alpha,beta-diaminopropanoic acid (CMDAP) evoked inward currents which were antagonized by APV (30 microM), but not by CNQX (10 microM). N-acetyl-alpha,beta-diaminopropanoic acid (ADAP) evoked no detectable ionic currents but potentiated N-methyl-D-aspartate (NMDA)-activated currents. The potentiation of NMDA currents by ADAP was blocked by 7-chlorokynurenic acid. Carboxymethylcysteine (CMC) did not activate any detectable ionic currents. None of the three beta-ODAP analogs produced visible symptoms of toxicity in day old chicks when administered for 2-3 consecutive days. Ligand binding studies demonstrated that all the three compounds were effective to in displacing [3H]glutamate. The maximum inhibition was 92% for CMDAP, 61% for ADAP, 65% for CMC and 99% for beta-ODAP. These data indicate that analogs of beta-ODAP may interact with glutamate receptors without producing neurotoxicity.


Subject(s)
Amino Acids, Diamino/pharmacology , Neurotoxins/pharmacology , Amino Acids, Diamino/chemistry , Animals , Cells, Cultured , Chickens , Hippocampus/drug effects , Hippocampus/physiology , Male , Membrane Potentials/drug effects , Radioligand Assay , Rats , Rats, Sprague-Dawley
2.
J Pharmacol Exp Ther ; 282(3): 1458-64, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9316859

ABSTRACT

The potency of Pb2+ inhibition of glutamate-activated currents mediated by N-methyl-D-aspartate (NMDA) receptors was dependent on the subunits composing the receptors when functionally expressed in Xenopus laevis oocytes. Pb2+ reduced the amplitudes of glutamate-activated currents and shifted the agonist EC50 values of NMDA receptors consisting of different subunit compositions. The IC50 values for Pb2+ ranged from 1.52 to 8.19 microM, with a rank order of potency of NR1b-2A > NR1b-2C > NR1b-2D > NR1b-2AC. For NR1b-2AC NMDA receptors, the IC50 value was dependent on the agonist concentration; at saturating agonist concentrations (300 microM), the IC50 value was 8.19 microM, whereas at 3 microM glutamate, the IC50 value was 3.39 microM. Pb2+ was a noncompetitive inhibitor of NR1b-2A, NR1b-2C and NR1b-2D NMDA receptors. At low concentrations (<1 microM) Pb2+ potentiated NR1b-2AC NMDA receptors. These data provide further evidence to support the hypothesis that the actions of Pb2+ on NMDA receptors are determined by the receptor subunit composition.


Subject(s)
Lead/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Female , Glutamic Acid/pharmacology , Rats , Receptors, N-Methyl-D-Aspartate/chemistry , Xenopus laevis
3.
J Pharmacol Exp Ther ; 278(1): 15-20, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8764330

ABSTRACT

Pb+2 is a potent inhibitor of N-methyl-D-aspartate (NMDA) receptors and its action is dependent on neuronal maturation. Developmentally regulated expression of NMDA receptor subunits may underlie the changing sensitivity to Pb+2. In oocytes expressing in vitro transcribed cRNAs for zeta 1 epsilon 1 or zeta 1 epsilon 2 NMDA receptor subunits, Pb+2 inhibited glutamate-activated currents with IC50 values of 0.87 +/- 0.25 and 1.21 +/- 0.22 microM, respectively, and NMDA-activated currents with IC50 values of 1.37 +/- 0.47 and 1.11 +/- 0.33 microM, respectively. In oocytes expressing zeta 1 epsilon 1 epsilon 2 subunits, the IC50 values for Pb+2 blockade of NMDA- or glutamate-activated currents were significantly larger when compared to zeta 1 epsilon 1 or zeta 1 epsilon 2 combinations. Pb+2 concentrations greater than 1 microM inhibited glutamate-activated currents with an IC50 of 6.1 +/- 1.22 microM and NMDA-activated currents with an IC50 of 6.64 +/- 3.34 microM. Pb+2 reduced the maximal current amplitude consistent with a noncompetitive block. zeta 1 epsilon 1 epsilon 2 NMDA receptors were potentiated by low concentrations of Pb+2 ( < 1.0 microM). These data suggest that brain regions with zeta 1 epsilon 1 or zeta 1 epsilon 2 NMDA receptors subunits would be more vulnerable to Pb+2 toxicity than those with zeta 1 epsilon 1 epsilon 2 NMDA-receptors, which are expressed later in development. These data provide a mechanism for the reported changes in the efficacy of block of NMDA receptors by Pb+2 during development.


Subject(s)
Glutamic Acid/pharmacology , Lead/pharmacology , N-Methylaspartate/pharmacology , Receptors, N-Methyl-D-Aspartate/drug effects , Animals , Dose-Response Relationship, Drug , Female , Oocytes , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...