Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1601: 327-334, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31128881

ABSTRACT

Polyester-polyurethane lacquer, used to cover the inner surface of metallic food contact materials, may transfer non-intentionally added substances (NIAS) to the food. The identification of such a diversity of compounds, considered as migrating substances, requires taking advantage of complementary analytical platforms. Therefore, four types of gas chromatography-mass spectrometry (GCMS) couplings were investigated and compared for their abilities to identify migrating substances after acetonitrile extraction of two commercialised lacquers. In parallel, various ionisation sources, i.e. electron ionisation (EI) (70 eV and soft energies) and atmospheric-pressure chemical ionisation (APCI) as well as various mass analysers, i.e. quadrupole, time-of-flight (low and high resolution) and Orbitrap, were tested. Comparison of mass spectra with a commercial library for EI ionisation source led to the identification of two NIAS compounds, isophorone diisocyanate and 4,4'-diphenylmethane diisocyanate. Additionally, many cyclic oligoesters (four monomer units) were unambiguously identified according to supplier's declaration on starting materials used, primarily based on the molecular ion observed by APCI mode and characteristic fragment ions. High resolution mass analysers also enhanced confidence level in such NIAS identification. One- and two-dimensional GC were also investigated for separation assessment. Although GC × GC did not reveal additional NIAS, its use provided a valuable mapping of oligomers according to monomers composition. These results were compared to our previously published LC-MS study, carried out on the same lacquer samples. This study shows that LC and GC, along with their related ionisation techniques and their own selectivity, are complementary approaches, revealing different classes of compounds covering a wide range of volatility and polarity.


Subject(s)
Food Packaging/standards , Gas Chromatography-Mass Spectrometry , Polyesters/chemistry , Polyurethanes/chemistry , Atmospheric Pressure , Food Contamination/analysis , Lacquer
2.
Anal Bioanal Chem ; 410(22): 5391-5403, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29516137

ABSTRACT

An untargeted strategy aiming at identifying non-intentionally added substances (NIAS) migrating from coatings was developed. This innovative approach was applied to two polyester-polyurethane lacquers, for which suppliers previously provided the identity of the monomers involved. Lacquers were extracted with acetonitrile and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Data, acquired in the full scan mode, were processed using an open-source R-environment (xcms and CAMERA packages) to list the detected features and deconvolute them in groups related to individual compounds. The most intense groups, accounting for more than 85% of cumulated feature intensities, were then investigated. A homemade database, populated with predicted polyester oligomer combinations from a relevant selection of diols and diacids, enabled highlighting the presence of 14 and 17 cyclic predicted polyester oligomers in the two lacquers, including three mutual combinations explained by common known monomers. Combination hypotheses were strengthened by chromatographic considerations and by the investigation of fragmentation patterns. Regarding unpredicted migrating substances, four monomers were hypothesised to explain several polyester or caprolactam oligomer series. Finally, considering both predicted and tentatively elucidated unpredicted oligomers, it was possible to assign hypotheses to features representing up to 82% and 90% of the cumulated intensities in the two lacquers, plus 9% and 3% (respectively) originating from the procedural blank. Graphical abstract Elucidation of non-intentionally added substances.


Subject(s)
Food Contamination/analysis , Food Packaging , Hazard Analysis and Critical Control Points/methods , Lacquer/analysis , Polyesters/analysis , Polyurethanes/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Food Packaging/methods
3.
Chemosphere ; 180: 365-372, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28415037

ABSTRACT

A LC-ESI(-)-HRMS method dedicated to the analysis of 6 HBCDD enantiomers at trace levels in animal matrices was developed, using a cellulose based stationary phase with a particle size of 2.5 µm. This method was applied to a sample set derived from a kinetic study of α-HBCDD previously conducted in fast- and slow-growing chickens (Gallus gallus domesticus, n = 49, plus controls), in order to study the enantiomer specific accumulation and depuration of α-HBCDD in various tissues. Regarding abdominal adipose tissue, muscle and liver, the average enantiomeric fractions of α-HBCDD (EFα) for continuously exposed groups ranged between 0.434 and 0.467, with standard deviations below 0.014, showing a significant enrichment in (-)α enantiomer even accentuated for slow growing individuals during depuration with EFα reduced by about 0.020. Similar trends were observed for pooled plasma. Then, EFα of circulating plasma α-HBCDD appeared to closely reflect EFα in storage tissues and liver, suggesting some equilibrium. The racemic elimination of α enantiomer in excreta during the contamination phase indicated that no preferential gastrointestinal absorption took place. By contrast, preferential excretion of (-)α-HBCDD from the circulating compartment to the intestinal lumen occurred during the depuration. Finally, the method was applied to samples collected in three chicken farms, selected for total HBCDD levels in muscle in the ng/g range, as a tool to determine whether the contamination occurred ante- or post-mortem, according to the chiral signature. Ante-mortem contamination was hypothesised for 2 farms, with feed being excluded as contamination source.


Subject(s)
Chickens/metabolism , Environmental Monitoring/methods , Environmental Pollutants/metabolism , Hydrocarbons, Brominated/metabolism , Animals , Liver , Muscles , Stereoisomerism
4.
Chemosphere ; 178: 424-431, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28342374

ABSTRACT

The aim of the current study was to describe the fate of ingested α-hexabromocyclododecane (α-HBCDD) in fast-growing (FG) and slow-growing (SG) broilers, through an exposure to a dietary concentration of 50 ng α-HBCDD g-1 feed during 42 and 84 days, respectively. Depuration parameters were assessed in SG broilers successively exposed during 42 days and depurated during 42 days. At market age, SG broilers had ingested 42% more feed than FG broilers, while their body weight gain per g of feed ingested was 34% lower. No isomerization of α- to ß- or γ-HBCDD forms occurred, while OH-HBCDD was identified as a product of α-HBCDD metabolism. Irrespective of the strain, abdominal fat displayed the highest α-HBCDD concentration on a lipid weight basis, followed leg muscles and then breast muscle, liver and plasma. The accumulation ratios of α-HBCDD were slightly higher in SG (6.7, 2.1, 2.6 and 9.9 in leg muscles, breast muscle, liver and abdominal fat, respectively) than in FG broilers (5.2, 2.2, 1.1 and 8.4, respectively). The elimination half-lives in SG broilers were 20, 12 and 19 d in leg muscles, breast muscle and abdominal fat, respectively, to which dilution through growth contributed for around 50%. The overall assimilation efficiency of α-HBCDD was estimated at 58 and 50% in FG and SG broilers, respectively, while 22 and 17% of α-HBCDD ingested were estimated to be eliminated in excreta as metabolites.


Subject(s)
Chickens/growth & development , Chickens/metabolism , Flame Retardants/metabolism , Hydrocarbons, Brominated/metabolism , Animals , Body Weight , Diet , Male , Tissue Distribution
5.
Anal Chim Acta ; 936: 130-8, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27566348

ABSTRACT

In the present work, we addressed the question of global seeking/screening organohalogenated compounds in a large panel of complex biological matrices, with a particular focus on unknown chemicals that may be considered as potential emerging hazards. A fishing strategy was developed based on untargeted profiling among full scan acquisition datasets provided by high resolution mass spectrometry. Since large datasets arise from such profiling, filtering useful information stands as a central question. In this way, we took advantage of the exact mass differences between Cl and Br isotopes. Indeed, our workflow involved an innovative Visual Basic for Applications script aiming at pairing features according to this mass difference, in order to point out potential organohalogenated clusters, preceded by an automated peak picking step based on the centWave function (xcms package of open access R programming environment). Then, H/Cl-scale mass defect plots were used to visualize the datasets before and after filtering. The filtering script was successfully applied to a dataset generated upon liquid chromatography coupled to ESI(-)-HRMS measurement from one eel muscle extract, allowing for realistic manual investigations of filtered clusters. Starting from 9789 initial obtained features, 1994 features were paired in 589 clusters. Hexabromocyclododecane, chlorinated paraffin series and various other compounds have been identified or tentatively identified, allowing thus broad screening of organohalogenated compounds in this extract. Although realistic, manual review of paired clusters remains time consuming and much effort should be devoted to automation.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Hydrocarbons, Halogenated/analysis , Isotope Labeling , Mass Spectrometry
6.
J Agric Food Chem ; 64(10): 2112-9, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26889954

ABSTRACT

The aim of the current study was to describe the fate of ingested α-hexabromocyclododecane (α-HBCDD) in laying hens. Individuals were exposed to two dietary concentrations of α-HBCDD (50 and 5 ng g(-1) feed) for 18 or 11 weeks followed by a 7-week decontamination period. The results show that no isomerization of α- to ß- or γ-HBCDD forms occurred, whereas OH-HBCDD was identified as a product of α-HBCDD metabolism. Irrespective of the level of feed contamination, estimates of steady-state accumulation ratios were 5.2, 3.6, and 9.2 and half-lives were estimated at 17.4, 22.8, and 35.3 days in egg yolk, liver tissue, and abdominal fat, respectively. The steady-state carry-over rate to eggs was 22.9%. Thus, α-HBCDD ingested by laying hens is readily transferred to eggs and significantly accumulates in adipose tissue.


Subject(s)
Chickens/metabolism , Eggs/analysis , Hydrocarbons, Brominated/metabolism , Animal Feed/analysis , Animals , Egg Yolk/chemistry , Egg Yolk/metabolism , Female , Food Contamination/analysis , Hydrocarbons, Brominated/analysis , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...