Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 8(83): eabq7486, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37172104

ABSTRACT

After resolution of infection, T cells differentiate into long-lived memory cells that recirculate through secondary lymphoid organs or establish residence in tissues. In contrast to CD8+ tissue-resident memory T cells (TRM), the developmental origins and transcriptional regulation of CD4+ TRM remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profiles of CD4+ TRM in the small intestine (SI) responding to acute viral infection, revealing a shared gene expression program and chromatin accessibility profile with circulating TH1 and the progressive acquisition of a mature TRM program. Single-cell RNA sequencing identified heterogeneity among established CD4+ TRM, which were predominantly located in the lamina propria, and revealed a population of cells that coexpressed both effector- and memory-associated genes, including the transcriptional regulators Blimp1, Id2, and Bcl6. TH1-associated Blimp1 and Id2 and TFH-associated Bcl6 were required for early TRM formation and development of a mature TRM population in the SI. These results demonstrate a developmental relationship between TH1 effector cells and the establishment of early TRM, as well as highlighted differences in CD4+ versus CD8+ TRM populations, providing insights into the mechanisms underlying the origins, differentiation, and persistence of CD4+ TRM in response to viral infection.


Subject(s)
Immunologic Memory , Virus Diseases , Humans , CD4-Positive T-Lymphocytes , Cell Differentiation , Gene Expression
2.
Proc Natl Acad Sci U S A ; 119(29): e2204254119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858332

ABSTRACT

Memory CD4+ T cells play a pivotal role in mediating long-term protective immunity, positioning them as an important target in vaccine development. However, multiple functionally distinct helper CD4+ T-cell subsets can arise in response to a single invading pathogen, complicating the identification of rare populations of memory precursor cells during the effector phase of infection and memory CD4+ T cells following pathogen clearance and the contraction phase of infection. Furthermore, current literature remains unclear regarding whether a single CD4+ memory T-cell lineage gives rise to secondary CD4+ T helper subsets or if there are unique memory precursor cells within each helper lineage. A majority of T follicular helper (Tfh) cells, which have established memory potential, express Id3, an inhibitor of E protein transcription factors, following acute viral infection. We show that expression of Id3 definitively identified a subset of cells within both the CD4+ Tfh and T helper 1 (Th1) lineages at memory time points that exhibited memory potential, with the capacity for significant re-expansion in response to secondary infection. Notably, we demonstrate that a subset of Th1 cells that survive into the memory phase were marked by Id3 expression and possessed the potential for enhanced expansion and generation of both Th1 and Tfh secondary effector cell populations in a secondary response to pathogen. Additionally, these cells exhibited enrichment of key molecules associated with memory potential when compared with Id3lo Th1 cells. Therefore, we propose that Id3 expression serves as an important marker to indicate multipotent potential in memory CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes , Immunologic Memory , Inhibitor of Differentiation Proteins , T-Lymphocyte Subsets , Th1 Cells , Animals , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Inhibitor of Differentiation Proteins/metabolism , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology
3.
Nat Immunol ; 23(7): 1121-1131, 2022 07.
Article in English | MEDLINE | ID: mdl-35761084

ABSTRACT

Tissue-resident memory T cells (TRM cells) provide protective immunity, but the contributions of specific tissue environments to TRM cell differentiation and homeostasis are not well understood. In the present study, the diversity of gene expression and genome accessibility by mouse CD8+ TRM cells from distinct organs that responded to viral infection revealed both shared and tissue-specific transcriptional and epigenetic signatures. TRM cells in the intestine and salivary glands expressed transforming growth factor (TGF)-ß-induced genes and were maintained by ongoing TGF-ß signaling, whereas those in the fat, kidney and liver were not. Constructing transcriptional-regulatory networks identified the transcriptional repressor Hic1 as a critical regulator of TRM cell differentiation in the small intestine and showed that Hic1 overexpression enhanced TRM cell differentiation and protection from infection. Provision of a framework for understanding how CD8+ TRM cells adapt to distinct tissue environments, and identification of tissue-specific transcriptional regulators mediating these adaptations, inform strategies to boost protective memory responses at sites most vulnerable to infection.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory , Animals , Cell Differentiation/genetics , Epigenesis, Genetic , Mice , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
4.
J Immunol ; 207(5): 1377-1387, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34380645

ABSTRACT

T cells are essential mediators of immune responses against infectious diseases and provide long-lived protection from reinfection. The differentiation of naive to effector T cells and the subsequent differentiation and persistence of memory T cell populations in response to infection is a highly regulated process. E protein transcription factors and their inhibitors, Id proteins, are important regulators of both CD4+ and CD8+ T cell responses; however, their regulation at the protein level has not been explored. Recently, the deubiquitinase USP1 was shown to stabilize Id2 and modulate cellular differentiation in osteosarcomas. In this study, we investigated a role for Usp1 in posttranslational control of Id2 and Id3 in murine T cells. We show that Usp1 was upregulated in T cells following activation in vitro or following infection in vivo, and the extent of Usp1 expression correlated with the degree of T cell expansion. Usp1 directly interacted with Id2 and Id3 following T cell activation. However, Usp1 deficiency did not impact Id protein abundance in effector T cells or alter effector T cell expansion or differentiation following a primary infection. Usp1 deficiency resulted in a gradual loss of memory CD8+ T cells over time and reduced Id2 protein levels and proliferation of effector CD8+ T cell following reinfection. Together, these results identify Usp1 as a player in modulating recall responses at the protein level and highlight differences in regulation of T cell responses between primary and subsequent infection encounters. Finally, our observations reveal differential regulation of Id2/3 proteins between immune versus nonimmune cell types.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Ubiquitin-Specific Proteases/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Immunity, Cellular , Immunization , Immunologic Memory , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational , Ubiquitin-Specific Proteases/genetics
5.
Sci Immunol ; 5(50)2020 08 21.
Article in English | MEDLINE | ID: mdl-32826341

ABSTRACT

Inflammatory bowel disease (IBD) encompasses a spectrum of gastrointestinal disorders driven by dysregulated immune responses against gut microbiota. We integrated single-cell RNA and antigen receptor sequencing to elucidate key components, cellular states, and clonal relationships of the peripheral and gastrointestinal mucosal immune systems in health and ulcerative colitis (UC). UC was associated with an increase in IgG1+ plasma cells in colonic tissue, increased colonic regulatory T cells characterized by elevated expression of the transcription factor ZEB2, and an enrichment of a γδ T cell subset in the peripheral blood. Moreover, we observed heterogeneity in CD8+ tissue-resident memory T (TRM) cells in colonic tissue, with four transcriptionally distinct states of differentiation observed across health and disease. In the setting of UC, there was a marked shift of clonally related CD8+ TRM cells toward an inflammatory state, mediated, in part, by increased expression of the T-box transcription factor Eomesodermin. Together, these results provide a detailed atlas of transcriptional changes occurring in adaptive immune cells in the context of UC and suggest a role for CD8+ TRM cells in IBD.


Subject(s)
Colitis, Ulcerative/immunology , Intraepithelial Lymphocytes/immunology , Memory T Cells/immunology , T-Lymphocytes, Regulatory/immunology , Adaptive Immunity , Animals , Colon/immunology , Humans , Immunoglobulin G/immunology , Male , Mice, Transgenic , Single-Cell Analysis
6.
Immunity ; 52(5): 808-824.e7, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433949

ABSTRACT

Tissue-resident memory CD8+ T cells (Trm) provide host protection through continuous surveillance of non-lymphoid tissues. Using single-cell RNA-sequencing (scRNA-seq) and genetic reporter mice, we identified discrete lineages of intestinal antigen-specific CD8+ T cells, including a Blimp1hiId3lo tissue-resident effector cell population most prominent in the early phase of acute viral and bacterial infections and a molecularly distinct Blimp1loId3hi tissue-resident memory population that subsequently accumulated at later infection time points. These Trm populations exhibited distinct cytokine production, secondary memory potential, and transcriptional programs including differential roles for transcriptional regulators Blimp1, T-bet, Id2, and Id3 in supporting and maintaining intestinal Trm. Extending our analysis to malignant tissue, we also identified discrete populations of effector-like and memory-like CD8+ T cell populations with tissue-resident gene-expression signatures that shared features of terminally exhausted and progenitor-exhausted T cells, respectively. Our findings provide insight into the development and functional heterogeneity of Trm cells, which has implications for enhancing vaccination and immunotherapy approaches.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Immunotherapy/methods , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/immunology , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/immunology , Inhibitor of Differentiation Proteins/metabolism , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/physiology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms/immunology , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , Positive Regulatory Domain I-Binding Factor 1/metabolism
7.
Sci Immunol ; 5(47)2020 05 15.
Article in English | MEDLINE | ID: mdl-32414833

ABSTRACT

During an immune response to microbial infection, CD8+ T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8+ T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional heterogeneity within the siIEL CD8+ T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these findings may inform strategies to optimize CD8+ T cell responses to protect against microbial infection and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Sequence Analysis, RNA , Single-Cell Analysis , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
Curr Opin Immunol ; 58: 89-97, 2019 06.
Article in English | MEDLINE | ID: mdl-31170601

ABSTRACT

Upon activation, naive T cells give rise to a heterogeneous cell population of effector and memory T cells that mediate antigen clearance and provide long-lived protection from rechallenge. Many of the transcriptional regulators that direct the differentiation of naive T cells to acquire the range of phenotypic and functional characteristics of effector and memory T cells have been described. However, the active programs that maintain the specific subsets of memory T cells are less clear. Here, we discuss recent studies that suggest effector and memory CD8+ T cells exist in cellular 'states' with inherent plasticity. Further, we consider the newly identified role of active transcriptional and epigenetic programming in maintaining the identity of the distinct subsets within the memory population.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Immunologic Memory/immunology , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic/immunology , Epigenomics/methods , Gene Expression Regulation/immunology , Humans , Immunologic Memory/genetics , Lymphocyte Activation/genetics , T-Lymphocyte Subsets/metabolism
9.
Trends Immunol ; 40(5): 431-446, 2019 05.
Article in English | MEDLINE | ID: mdl-30956067

ABSTRACT

ZEB1 and ZEB2 are zinc-finger E homeobox-binding transcription factors best known for their role in driving epithelial to mesenchymal transition. However, in recent years our understanding of these two transcription factors has broadened, and it is now clear that they are expressed by a variety of immune cells of both myeloid and lymphoid lineages, including dendritic cells, macrophages, monocytes, B, T, and NK cells. In these cells, ZEBs function to regulate important transcriptional networks necessary for cell differentiation, maintenance, and function. Here, we review the current understanding of ZEB regulation across immune cell lineages, particularly in mice, highlighting present gaps in our knowledge. We also speculate on important questions for the future.


Subject(s)
Zinc Finger E-box Binding Homeobox 2/immunology , Zinc Finger E-box-Binding Homeobox 1/immunology , B-Lymphocytes/immunology , Dendritic Cells/immunology , Epithelial-Mesenchymal Transition/immunology , Humans , Killer Cells, Natural/immunology , Macrophages/immunology , Monocytes/immunology , T-Lymphocytes/immunology
10.
J Exp Med ; 215(3): 773-783, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29440362

ABSTRACT

CD8+ T cells responding to infection differentiate into a heterogeneous population composed of progeny that are short-lived and participate in the immediate, acute response and those that provide long-lasting host protection. Although it is appreciated that distinct functional and phenotypic CD8+ T cell subsets persist, it is unclear whether there is plasticity among subsets and what mechanisms maintain subset-specific differences. Here, we show that continued Id2 regulation of E-protein activity is required to maintain the KLRG1hi CD8+ T cell population after lymphocytic choriomeningitis virus infection. Induced deletion of Id2 phenotypically and transcriptionally transformed the KLRG1hi "terminal" effector/effector-memory CD8+ T cell population into a KLRG1lo memory-like population, promoting a gene-expression program that resembled that of central memory T cells. Our results question the idea that KLRG1hi CD8+ T cells are necessarily terminally programmed and suggest that sustained regulation is required to maintain distinct CD8+ T cell states.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Inhibitor of Differentiation Protein 2/metabolism , Animals , Antigens/metabolism , Gene Deletion , Lectins, C-Type , Mice, Inbred C57BL , Protein Binding , Receptors, Immunologic/metabolism
11.
J Exp Med ; 215(2): 575-594, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29282254

ABSTRACT

Upon infection with an intracellular pathogen, cytotoxic CD8+ T cells develop diverse differentiation states characterized by function, localization, longevity, and the capacity for self-renewal. The program of differentiation is determined, in part, by FOXO1, a transcription factor known to integrate extrinsic input in order to specify survival, DNA repair, self-renewal, and proliferation. At issue is whether the state of T cell differentiation is specified by initial conditions of activation or is actively maintained. To study the spectrum of T cell differentiation, we have analyzed an infection with mouse cytomegalovirus, a persistent-latent virus that elicits different cytotoxic T cell responses characterized as acute resolving or inflationary. Our results show that FOXO1 is continuously required for all the phenotypic characteristics of memory-effector T cells such that with acute inactivation of the gene encoding FOXO1, T cells revert to a short-lived effector phenotype, exhibit reduced viability, and manifest characteristics of anergy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Clonal Anergy , Forkhead Box Protein O1/immunology , Immunologic Memory , Adoptive Transfer , Animals , Antigens, Viral , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation/immunology , Cell Survival/immunology , Forkhead Box Protein O1/deficiency , Forkhead Box Protein O1/genetics , Hepatocyte Nuclear Factor 1-alpha/immunology , Lectins, C-Type , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Muromegalovirus/immunology , Receptors, Immunologic/immunology
12.
Nature ; 552(7685): 337-339, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32080617
13.
Nature ; 552(7685): 337-339, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29293221
14.
Nat Immunol ; 17(7): 834-43, 2016 07.
Article in English | MEDLINE | ID: mdl-27213691

ABSTRACT

The differentiation of helper T cells into effector subsets is critical to host protection. Transcription factors of the E-protein and Id families are important arbiters of T cell development, but their role in the differentiation of the TH1 and TFH subsets of helper T cells is not well understood. Here, TH1 cells showed more robust Id2 expression than that of TFH cells, and depletion of Id2 via RNA-mediated interference increased the frequency of TFH cells. Furthermore, TH1 differentiation was blocked by Id2 deficiency, which led to E-protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired the generation of TH1 cells following infection with Toxoplasma gondii. The TFH cell-defining transcriptional repressor Bcl6 bound the Id2 locus, which provides a mechanism for the bimodal Id2 expression and reciprocal development of TH1 cells and TFH cells.


Subject(s)
Arenaviridae Infections/immunology , Cell Differentiation , Inhibitor of Differentiation Protein 2/metabolism , Lymphocytic choriomeningitis virus/immunology , Th1 Cells/physiology , Toxoplasma/immunology , Toxoplasmosis/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Female , Germinal Center/immunology , Inhibitor of Differentiation Protein 2/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Protein Binding , Proto-Oncogene Proteins c-bcl-6/metabolism , RNA, Small Interfering/genetics , Th1 Cells/parasitology , Th1 Cells/virology
15.
J Exp Med ; 212(12): 2027-39, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26503445

ABSTRACT

ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition-dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1(hi) effector CD8(+) T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8(+) T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1(hi) effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8(+) T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8(+) T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Homeodomain Proteins/immunology , Lymphocytic Choriomeningitis/immunology , Repressor Proteins/immunology , T-Lymphocyte Subsets/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Flow Cytometry , Homeodomain Proteins/genetics , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory/immunology , Lectins, C-Type , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Protein Binding/immunology , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Repressor Proteins/deficiency , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , T-Box Domain Proteins/immunology , T-Lymphocyte Subsets/metabolism , Transcriptome/genetics , Transcriptome/immunology , Zinc Finger E-box Binding Homeobox 2
16.
Front Immunol ; 6: 234, 2015.
Article in English | MEDLINE | ID: mdl-26052328

ABSTRACT

Elevation of intracellular calcium ion (Ca(2+)) levels is a vital event that regulates T lymphocyte homeostasis, activation, proliferation, differentiation, and apoptosis. The mechanisms that regulate intracellular Ca(2+) signaling in lymphocytes involve tightly controlled concinnity of multiple ion channels, membrane receptors, and signaling molecules. T cell receptor (TCR) engagement results in depletion of endoplasmic reticulum (ER) Ca(2+) stores and subsequent sustained influx of extracellular Ca(2+) through Ca(2+) release-activated Ca(2+) (CRAC) channels in the plasma membrane. This process termed store-operated Ca(2+) entry (SOCE) involves the ER Ca(2+) sensing molecule, STIM1, and a pore-forming plasma membrane protein, ORAI1. However, several other important Ca(2+) channels that are instrumental in T cell function also exist. In this review, we discuss the role of additional Ca(2+) channel families expressed on the plasma membrane of T cells that likely contribute to Ca(2+) influx following TCR engagement, which include the TRP channels, the NMDA receptors, the P2X receptors, and the IP3 receptors, with a focus on the voltage-dependent Ca(2+) (CaV) channels.

17.
Curr Opin Immunol ; 25(5): 660-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24094885

ABSTRACT

Upon infection, CD8(+) T cells proliferate and differentiate into armed effector cells capable of eliminating the assaulting pathogen. Although the majority of the antigen-specific T cells will die as the immune response wanes, a few will survive indefinitely to establish the memory population and provide long-lived protection against reinfection. E protein transcription factors and their inhibitors, ID proteins, operate to balance expression of genes that control CD8(+) T cell differentiation through this process. Here, we discuss the role of ID2 and ID3 in promoting the generation and survival of effector and memory populations, particularly highlighting their reciprocal roles in shaping the CD8(+) T cell response unique to the inflammatory milieu. We further examine this coordinated control of gene expression in the context of additional transcription factors within the transcriptional network that programs CD8(+) effector and memory T cell differentiation.


Subject(s)
Immunologic Memory , Inhibitor of Differentiation Proteins/immunology , T-Lymphocytes/immunology , Animals , Cell Differentiation , Cell Survival , Gene Expression Regulation , Humans , T-Lymphocytes/cytology
18.
Front Immunol ; 4: 164, 2013.
Article in English | MEDLINE | ID: mdl-23805141

ABSTRACT

Calcium (Ca(2+)) is a universal second messenger important for T lymphocyte homeostasis, activation, proliferation, differentiation, and apoptosis. The events surrounding Ca(2+) mobilization in lymphocytes are tightly regulated and involve the coordination of diverse ion channels, membrane receptors, and signaling molecules. A mechanism termed store-operated Ca(2+) entry (SOCE), causes depletion of endoplasmic reticulum (ER) Ca(2+) stores following T cell receptor (TCR) engagement and triggers a sustained influx of extracellular Ca(2+) through Ca(2+) release-activated Ca(2+) (CRAC) channels in the plasma membrane. The ER Ca(2+) sensing molecule, stromal interaction molecule 1 (STIM1), and a pore-forming plasma membrane protein, ORAI1, have been identified as important mediators of SOCE. Here, we review the role of several additional families of Ca(2+) channels expressed on the plasma membrane of T cells that likely contribute to Ca(2+) influx following TCR engagement, particularly highlighting an important role for voltage-dependent Ca(2+) channels (CaV) in T lymphocyte biology.

19.
PLoS One ; 4(10): e7210, 2009 Oct 06.
Article in English | MEDLINE | ID: mdl-19806187

ABSTRACT

Cross-presentation is now recognized as a major mechanism for initiating CD8 T cell responses to virus and tumor antigens in vivo. It provides an elegant mechanism that allows relatively few Dendritic cells (DCs) to initiate primary immune responses while avoiding the consumptive nature of pathogenic infection. CD8 T cells play a major role in anti-bacterial immune responses; however, the contribution of cross-presentation for priming CD8 T cell responses to bacteria, in vivo, is not well established. Listeria monocytogenes (Listeria) is the causative agent of Listeriosis, an opportunistic food-borne bacterial infection that poses a significant public health risk. Here, we employ a transgenic mouse model in which cross-presentation is uniquely inactivated, to investigate cross-priming during primary Listeria infection. We show that cross-priming deficient mice are severely compromised in their ability to generate antigen-specific T cells to stimulate MHC I-restricted CTL responses following Listeria infection. The defect in generation of Listeria-elicited CD8 T cell responses is also apparent in vitro. However, in this setting, the endogenous route of processing Listeria-derived antigens is predominant. This reveals a new experimental dichotomy whereby functional sampling of Listeria-derived antigens in vivo but not in vitro is dependent on cross-presentation of exogenously derived antigen. Thus, under normal physiological circumstances, cross-presentation is demonstrated to play an essential role in priming CD8 T cell responses to bacteria.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/microbiology , Listeria monocytogenes/immunology , Animals , Antigen Presentation/immunology , Bone Marrow Cells/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Cell Proliferation , Cross-Priming/immunology , Immune System , Listeriosis/immunology , Listeriosis/microbiology , Lymphocyte Activation , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic
20.
PLoS One ; 3(9): e3247, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18802471

ABSTRACT

BACKGROUND: Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined. METHODOLOGY/PRINCIPAL FINDINGS: In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing. CONCLUSIONS/SIGNIFICANCE: We conclude that DCs have 'hijacked' and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.


Subject(s)
Antigen Presentation/immunology , Dendritic Cells/cytology , Endosomes/metabolism , Genes, MHC Class I , Lysosomes/metabolism , Amino Acid Motifs , Animals , Cell Proliferation , Cytoplasm/metabolism , Dendritic Cells/metabolism , Endocytosis , Mice , Mice, Transgenic , Protein Structure, Tertiary , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , Vacuoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...