Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915627

ABSTRACT

Lipid nanoparticles (LNPs) have transformed genetic medicine, recently shown by their use in COVID-19 mRNA vaccines. While loading LNPs with mRNA has many uses, loading DNA would provide additional advantages such as long-term expression and availability of promoter sequences. However, here we show that plasmid DNA (pDNA) delivery via LNPs (pDNA-LNPs) induces acute inflammation in naïve mice which we find is primarily driven by the cGAS-STING pathway. Inspired by DNA viruses that inhibit this pathway for replication, we co-loaded endogenous lipids that inhibit STING into pDNA-LNPs. Specifically, loading nitro-oleic acid (NOA) into pDNA-LNPs (NOA-pDNA-LNPs) ameliorates serious inflammatory responses in vivo enabling prolonged transgene expression (at least 1 month). Additionally, we demonstrate the ability to iteratively optimize NOA-pDNA-LNPs' expression by performing a small LNP formulation screen, driving up expression 50-fold in vitro. Thus, NOA-pDNA-LNPs, and pDNA-LNPs co-loaded with other bioactive molecules, will provide a major new tool in the genetic medicine toolbox, leveraging the power of DNA's long-term and promoter-controlled expression.

2.
PLoS One ; 19(6): e0297451, 2024.
Article in English | MEDLINE | ID: mdl-38857220

ABSTRACT

Traumatic brain injury has faced numerous challenges in drug development, primarily due to the difficulty of effectively delivering drugs to the brain. However, there is a potential solution in targeted drug delivery methods involving antibody-drug conjugates or nanocarriers conjugated with targeting antibodies. Following a TBI, the blood-brain barrier (BBB) becomes permeable, which can last for years and allow the leakage of harmful plasma proteins. Consequently, an appealing approach for TBI treatment involves using drug delivery systems that utilize targeting antibodies and nanocarriers to help restore BBB integrity. In our investigation of this strategy, we examined the efficacy of free antibodies and nanocarriers targeting a specific endothelial surface marker called vascular cell adhesion molecule-1 (VCAM-1), which is known to be upregulated during inflammation. In a mouse model of TBI utilizing central fluid percussion injury, free VCAM-1 antibody did not demonstrate superior targeting when comparing sham vs. TBI brain. However, the administration of VCAM-1-targeted nanocarriers (liposomes) exhibited a 10-fold higher targeting specificity in TBI brain than in sham control. Flow cytometry and confocal microscopy analysis confirmed that VCAM-1 liposomes were primarily taken up by brain endothelial cells post-TBI. Consequently, VCAM-1 liposomes represent a promising platform for the targeted delivery of therapeutics to the brain following traumatic brain injury.


Subject(s)
Blood-Brain Barrier , Brain Injuries, Traumatic , Nanoparticles , Vascular Cell Adhesion Molecule-1 , Animals , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Vascular Cell Adhesion Molecule-1/metabolism , Mice , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Nanoparticles/chemistry , Liposomes , Male , Drug Delivery Systems , Mice, Inbred C57BL , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/drug effects
3.
Nano Lett ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598417

ABSTRACT

Two camps have emerged for targeting nanoparticles to specific organs and cell types: affinity moiety targeting and physicochemical tropism. Here we directly compare and combine both using intravenous (IV) lipid nanoparticles (LNPs) designed to target the lungs. We utilized PECAM antibodies as affinity moieties and cationic lipids for physicochemical tropism. These methods yield nearly identical lung uptake, but aPECAM LNPs show higher endothelial specificity. LNPs combining these targeting methods had >2-fold higher lung uptake than either method alone and markedly enhanced epithelial uptake. To determine if lung uptake is because the lungs are the first organ downstream of IV injection, we compared IV vs intra-arterial (IA) injection into the carotid artery, finding that IA combined-targeting LNPs achieve 35% of the injected dose per gram (%ID/g) in the first-pass organ, the brain, among the highest reported. Thus, combining the affinity moiety and physicochemical strategies provides benefits that neither targeting method achieves alone.

4.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659905

ABSTRACT

Lipid nanoparticles (LNPs) have emerged as the dominant platform for RNA delivery, based on their success in the COVID-19 vaccines and late-stage clinical studies in other indications. However, we and others have shown that LNPs induce severe inflammation, and massively aggravate pre-existing inflammation. Here, using structure-function screening of lipids and analyses of signaling pathways, we elucidate the mechanisms of LNP-associated inflammation and demonstrate solutions. We show that LNPs' hallmark feature, endosomal escape, which is necessary for RNA expression, also directly triggers inflammation by causing endosomal membrane damage. Large, irreparable, endosomal holes are recognized by cytosolic proteins called galectins, which bind to sugars on the inner endosomal membrane and then regulate downstream inflammation. We find that inhibition of galectins abrogates LNP-associated inflammation, both in vitro and in vivo . We show that rapidly biodegradable ionizable lipids can preferentially create endosomal holes that are smaller in size and reparable by the endosomal sorting complex required for transport (ESCRT) pathway. Ionizable lipids producing such ESCRT-recruiting endosomal holes can produce high expression from cargo mRNA with minimal inflammation. Finally, we show that both routes to non-inflammatory LNPs, either galectin inhibition or ESCRT-recruiting ionizable lipids, are compatible with therapeutic mRNAs that ameliorate inflammation in disease models. LNPs without galectin inhibition or biodegradable ionizable lipids lead to severe exacerbation of inflammation in these models. In summary, endosomal escape induces endosomal membrane damage that can lead to inflammation. However, the inflammation can be controlled by inhibiting galectins (large hole detectors) or by using biodegradable lipids, which create smaller holes that are reparable by the ESCRT pathway. These strategies should lead to generally safer LNPs that can be used to treat inflammatory diseases.

5.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38454606

ABSTRACT

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Ischemic Stroke , Liposomes , Nanoparticles , Vascular Cell Adhesion Molecule-1 , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Animals , Mice , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Nanoparticles/chemistry , Ischemic Stroke/metabolism , Ischemic Stroke/drug therapy , Lipids/chemistry , Drug Delivery Systems/methods , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Humans
6.
Adv Mater ; 36(26): e2312026, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38394670

ABSTRACT

Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up or down-regulate any protein of interest. LNPs have mostly been targeted to specific cell types or organs by physicochemical targeting in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. Here lung-tropic LNPs are examined, whose organ tropism derives from containing either a cationic or ionizable lipid conferring a positive zeta potential. Surprisingly, these LNPs are found to induce massive thrombosis. Such thrombosis is shown in the lungs and other organs, and it is shown that it is greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles, and even by lung-tropic ionizable lipids that do not have a permanent cationic charge. The mechanism depends on the LNPs binding to and then changing the conformation of fibrinogen, which then activates platelets and thrombin. Based on these mechanisms, multiple solutions are engineered that enable positively charged LNPs to target the lungs while ameliorating thrombosis. The findings illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.


Subject(s)
Blood Coagulation , Lipids , Lung , Nanoparticles , Thrombosis , Nanoparticles/chemistry , Lung/metabolism , Animals , Blood Coagulation/drug effects , Thrombosis/drug therapy , Thrombosis/metabolism , Lipids/chemistry , Thrombin/metabolism , Thrombin/chemistry , Humans , Fibrinogen/chemistry , Fibrinogen/metabolism , Mice
7.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546837

ABSTRACT

Lipid nanoparticles (LNPs) have become the dominant drug delivery technology in industry, holding the promise to deliver RNA to up- or down-regulate any protein of interest. LNPs have been targeted to specific cell types or organs by physicochemical targeting, in which LNP's lipid compositions are adjusted to find mixtures with the desired tropism. In a popular approach, physicochemical targeting is accomplished by formulating with charged lipids. Negatively charged lipids localize LNPs to the spleen, and positively charged lipids to the lungs. Here we found that lung-tropic LNPs employing cationic lipids induce massive thrombosis. We demonstrate that thrombosis is induced in the lungs and other organs, and greatly exacerbated by pre-existing inflammation. This clotting is induced by a variety of formulations with cationic lipids, including LNPs and non-LNP nanoparticles. The mechanism depends on the LNPs binding to fibrinogen and inducing platelet and thrombin activation. Based on these mechanisms, we engineered multiple solutions which enable positively charged LNPs to target the lungs while not inducing thrombosis. Our findings implicate thrombosis as a major barrier that blood erects against LNPs with cationic components and illustrate how physicochemical targeting approaches must be investigated early for risks and re-engineered with a careful understanding of biological mechanisms.

8.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398465

ABSTRACT

After more than 100 failed drug trials for acute ischemic stroke (AIS), one of the most commonly cited reasons for the failure has been that drugs achieve very low concentrations in the at-risk penumbra. To address this problem, here we employ nanotechnology to significantly enhance drug concentration in the penumbra's blood-brain barrier (BBB), whose increased permeability in AIS has long been hypothesized to kill neurons by exposing them to toxic plasma proteins. To devise drug-loaded nanocarriers targeted to the BBB, we conjugated them with antibodies that bind to various cell adhesion molecules on the BBB endothelium. In the transient middle cerebral artery occlusion (tMCAO) mouse model, nanocarriers targeted with VCAM antibodies achieved the highest level of brain delivery, nearly 2 orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles loaded with either a small molecule drug (dexamethasone) or mRNA (encoding IL-10) reduced cerebral infarct volume by 35% or 73%, respectively, and both significantly lowered mortality rates. In contrast, the drugs delivered without the nanocarriers had no effect on AIS outcomes. Thus, VCAM-targeted lipid nanoparticles represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS. Graphical abstract: Acute ischemic stroke induces upregulation of VCAM. We specifically targeted upregulated VCAM in the injured region of the brain with drug- or mRNA-loaded targeted nanocarriers. Nanocarriers targeted with VCAM antibodies achieved the highest brain delivery, nearly orders of magnitude higher than untargeted ones. VCAM-targeted nanocarriers loaded with dexamethasone and mRNA encoding IL-10 reduced infarct volume by 35% and 73%, respectively, and improved survival rates.

9.
ACS Nano ; 17(14): 13121-13136, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37432926

ABSTRACT

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.


Subject(s)
Drug Delivery Systems , Lung , Mice , Animals , Lung/metabolism , Brain/metabolism , Liposomes/metabolism , Leukocytes/metabolism , Intercellular Adhesion Molecule-1/metabolism
10.
J Control Release ; 356: 185-195, 2023 04.
Article in English | MEDLINE | ID: mdl-36868517

ABSTRACT

Intracerebral hemorrhage (ICH) is one of the most common causes of fatal stroke, yet has no specific drug therapies. Many attempts at passive intravenous (IV) delivery in ICH have failed to deliver drugs to the salvageable area around the hemorrhage. The passive delivery method assumes vascular leak through the ruptured blood-brain barrier will allow drug accumulation in the brain. Here we tested this assumption using intrastriatal injection of collagenase, a well-established experimental model of ICH. Fitting with hematoma expansion in clinical ICH, we showed that collagenase-induced blood leak drops significantly by 4 h after ICH onset and is gone by 24 h. We observed passive-leak brain accumulation also declines rapidly over ∼4 h for 3 model IV therapeutics (non-targeted IgG; a protein therapeutic; PEGylated nanoparticles). We compared these passive leak results with targeted brain delivery by IV monoclonal antibodies (mAbs) that actively bind vascular endothelium (anti-VCAM, anti-PECAM, anti-ICAM). Even at early time points after ICH induction, where there is high vascular leak, brain accumulation via passive leak is dwarfed by brain accumulation of endothelial-targeted agents: At 4 h after injury, anti-PECAM mAbs accumulate at 8-fold higher levels in the brain vs. non-immune IgG; anti-VCAM nanoparticles (NPs) deliver a protein therapeutic (superoxide dismutase, SOD) at 4.5-fold higher levels than the carrier-free therapeutic at 24 h after injury. These data suggest that relying on passive vascular leak provides inefficient delivery of therapeutics even at early time points after ICH, and that a better strategy might be targeted delivery to the brain endothelium, which serves as the gateway for the immune attack on the peri-hemorrhage inflamed brain region.


Subject(s)
Brain , Cerebral Hemorrhage , Animals , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/metabolism , Brain/metabolism , Endothelium, Vascular/metabolism , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/metabolism , Collagenases/adverse effects , Collagenases/metabolism , Immunoglobulin G/therapeutic use , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...