Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0292543, 2024.
Article in English | MEDLINE | ID: mdl-38470884

ABSTRACT

BACKGROUND: Doum palms (Hyphaene compressa) perform a crucial starring role in the lives of Kenya's arid and semi-arid people for empowerment and sustenance. Despite the crop's potential for economic gain, there is a lack of genetic resources and detailed information about its domestication at the molecular level. Given the doum palm's vast potential as a widely distributed plant in semi-arid and arid climates and a source of many applications, coupled with the current changing climate scenario, it is essential to understand the molecular processes that provide drought resistance to this plant. RESULTS: Assembly of the first transcriptome of doum palms subjected to water stress generated about 39.97 Gb of RNA-Seq data. The assembled transcriptome revealed 193,167 unigenes with an average length of 1655 bp, with 128,708 (66.63%) successfully annotated in seven public databases. Unigenes exhibited significant differentially expressed genes (DEGs) in well-watered and stressed-treated plants, with 45071 and 42457 accounting for up-regulated and down-regulated DEGs, respectively. GO term, KEGG, and KOG analysis showed that DEGs were functionally enriched cellular processes, metabolic processes, cellular and catalytic activity, metabolism, genetic information processing, signal transduction mechanisms, and posttranslational modification pathways. Transcription factors (TF), such as the MYB, WRKY, NAC family, FAR1, B3, bHLH, and bZIP, were the prominent TF families identified as doum palm DEGs encoding drought stress tolerance. CONCLUSIONS: This study provides a complete understanding of DEGs involved in drought stress at the transcriptome level in doum palms. This research is, therefore, the foundation for the characterization of potential genes, leading to a clear understanding of its drought stress responses and providing resources for improved genetic modification.


Subject(s)
Drought Resistance , Gene Expression Profiling , Humans , Transcriptome , Droughts , Signal Transduction , Gene Expression Regulation, Plant , Stress, Physiological/genetics
2.
Front Microbiol ; 14: 1258662, 2023.
Article in English | MEDLINE | ID: mdl-38029135

ABSTRACT

The invasive tomato leaf miner, Phthorimaea absoluta, is conventionally controlled through chemical insecticides. However, the rise of insecticide resistance has necessitated sustainable and eco-friendly alternatives. Entomopathogenic fungi (EPF) have shown potential due to their ability to overcome resistance and have minimal impact on non-target organisms. Despite this potential, the precise physiological mechanisms by which EPF acts on insect pests remain poorly understood. To attain a comprehensive understanding of the complex physiological processes that drive the successful control of P. absoluta adults through EPF, we investigated the impacts of different Metarhizium anisopliae isolates (ICIPE 665, ICIPE 20, ICIPE 18) on the pest's survival, cellular immune responses, and gut microbiota under varying temperatures. The study unveiled that ICIPE 18 caused the highest mortality rate among P. absoluta moths, while ICIPE 20 exhibited the highest significant reduction in total hemocyte counts after 10 days at 25°C. Moreover, both isolates elicited notable shifts in P. absoluta's gut microbiota. Our findings revealed that ICIPE 18 and ICIPE 20 compromised the pest's defense and physiological functions, demonstrating their potential as biocontrol agents against P. absoluta in tomato production systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...