Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38455667

ABSTRACT

Odor from preferred/non-preferred tsetse fly vertebrate hosts have been exploited in R&D of attractants/repellents of the fly for human and livestock protection. Odors from vertebrate hosts of Glossina austeni and Glossina pallidipes tsetse flies can facilitate formulation of novel attractants effective against G. austeni or improvement of existing attractant blends for G. pallidipes. We compared vertebrate blood meal sources of both fly species at Shimba Hills National Reserve, Kenya, to establish putative preferred host of either species, hence potential source of G. austeni or G. pallidipes specific odors. We trapped sympatric adult flies in 2021 and 2022 using NGU traps/sticky panels baited with POCA, collected their blood meals and characterize the meals using HRM vertebrate 16S rRNA- PCR (for host identification), and compared host profiles using GLM and Fisher's exact tests. We collected 168 and 62 sympatric G. pallidipes and G. austeni with bloodmeal, respectively in 2021 and, 230 and 142 respectively in 2022. In 2021, we identified putative hosts of 65.48 and 69.35 % of the G. pallidipes and G. austeni respectively and 82.61 and 80.28%, respectively in 2022. In 2021, we detected harnessed bushbuck, buffalo, common warthog and cattle putative host bloodmeals, and additionally bushpig and suni antelope bloodmeals in 2022. Putative vertebrate bloodmeal sources were significantly different by tsetse fly species (χ2(1, N=457) = 43.215, p < 0.001) and sampling year (χ2(1, N=457) = 8.044, p = 0.005). Frequency of common warthog bloodmeals was higher in G. pallidipes (65.79 %) than G. austeni (38.60%), and that of suni antelope and harnessed bushbuck putative bloodmeals higher in G. austeni (21.05-28.07%) than in G. pallidipes (6.84 - 17.37%) in 2022. There was an apparent change in putative feeding preference/host choices in both fly species between 2021 and 2022. Host bloodmeals in G. pallidipes or G. austeni predominantly from putative harnessed bushbuck, suni antelope or common warthog reveal these vertebrates with potential odors that can be harnessed and formulated into appropriate attractants for respective species and integrated into routine control regiment for G. pallidipes and/or G. austeni.

2.
PLoS One ; 16(12): e0260149, 2021.
Article in English | MEDLINE | ID: mdl-34860850

ABSTRACT

BACKGROUND: Several human-produced volatiles have been reported to mediate the host-seeking process under laboratory conditions, yet no effective lure or repellent has been developed for field application. Previously, we found a gradation of the attractiveness of foot odors of different malaria free individuals to Anopheles gambiae sensu stricto Giles. In this study, foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was collected, analyzed and attractive blend components identified. METHODS: The foot odor of the individual with the most attractive 'smelly' feet to the An. gambiae was trapped on Porapak Q and analyzed by gas chromatography-linked mass spectrometry (GC-MS). Specific constituents perceived by the insect olfactory system were then identified by GC-linked to electro-antennography detector (GC-EAD) and characterized by GC-MS. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi-field conditions in a screen-house using Counter Flow Geometry (CFG traps) baited with (i) the blend of all the EAD-active and (ii) other blends containing all components with exclusion of one component at a time. The number of mosquitoes trapped in the baited CFG traps were compared with those in the control traps. RESULTS: Eleven major and minor constituents: 2 carboxylic acids, six aldehydes, two ketones and one phenolic compound, were confirmed to be EAD-active. The contribution of each constituent to the behavioral response of An. gambiae was assessed through subtractive assays under semi- field conditions. Exclusion/ subtraction of one of the following compounds: i-butyric acid, i-valeric acid, n-octanal, n-nonanal, n-decanal, n-dodecanal, undecanal or n-tridecanal, from each blend led to reduction in the attractiveness of all the resulting blends, suggesting that all of them are critical/important for the attractiveness of the foot odor to An. gambiae mosquitoes. However, exclusion/subtraction of 4-ethoxyacetophenone, 4-ethylacetophenone and/or 2-methylphenol, led to significant enhancements in the attractiveness of the resulting blends, suggesting that each of these compounds had repellent effect on An. gambiae ss. Undecanal exhibited kairomonal activity at low natural concentrations under semi-field conditions but repellent activity at high unnatural conditions in the laboratory. Furthermore, the comparison of the mean mosquito catches in traps baited with the nine-component blend without 4-ethoxyacetophenone, 4-ethylacetophenone and the complete foot odor collection revealed that the former is significantly more attractive and confirmed the repellent effect of the two carbonyl compounds at low natural concentration levels. CONCLUSION: These results suggest that differential attractiveness of An. gambiae to human feet is due to qualitative and/or qualitative differences in the chemical compositions of the foot odors from individual human beings and relative proportions of the two chemical signatures (attractants versus repellents) as observed from the ratios of the bioactive components in the foot odors of the most attractive and least attractive individuals. Chemical signature means the ensemble of the compounds released by the organism in a specific physiological state. The chemical signature is emitter-dependent, but does not depend on receiver response. Thus, there is only one chemical signature for one individual or species that may eventually include inactive, attractive and repellent components for another organism. The nine-component attractive blend has a potential as an effective field bait for trapping of malaria vectors in human dwellings.


Subject(s)
Acetophenones/chemistry , Anopheles/drug effects , Cresols/chemistry , Ethyl Ethers/chemistry , Insect Repellents/chemistry , Volatile Organic Compounds/chemistry , Acetophenones/isolation & purification , Animals , Anopheles/physiology , Cresols/isolation & purification , Ethyl Ethers/isolation & purification , Female , Foot/physiology , Gas Chromatography-Mass Spectrometry , Humans , Insect Repellents/isolation & purification , Mosquito Control/methods , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Odorants/analysis , Volatile Organic Compounds/isolation & purification
3.
BMC Complement Altern Med ; 13: 48, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23445637

ABSTRACT

BACKGROUND: Malaria, trypanosomiasis and leishmaniasis have an overwhelming impact in the poorest countries in the world due to their prevalence, virulence and drug resistance ability. Currently, there is inadequate armory of drugs for the treatment of malaria, trypanosomiasis and leishmaniasis. This underscores the continuing need for the discovery and development of new anti-protozoal drugs. Consequently, there is an urgent need for research aimed at the discovery and development of new effective and safe anti-plasmodial, anti-trypanosomal and anti-leishmanial drugs. METHODS: Bioassay-guided chromatographic fractionation was employed for the isolation and purification of antiprotozoal alkaloids. RESULTS: The methanol extract from the leaves of Annickia kummeriae from Tanzania exhibited a strong anti-plasmodial activity against the multi-drug resistant Plasmodium falciparum K1 strain (IC50 0.12 ± 0.01 µg/ml, selectivity index (SI) of 250, moderate activity against Trypanosoma brucei rhodesiense STIB 900 strain (IC50 2.50 ± 0.19 µg/ml, SI 12) and mild activity against Leishmania donovani axenic MHOM-ET-67/82 strain (IC50 9.25 ± 0.54 µg/ml, SI 3.2). Bioassay-guided chromatographic fractionation led to the isolation of four pure alkaloids, lysicamine (1), trivalvone (2), palmatine (3), jatrorrhizine (4) and two sets of mixtures of jatrorrhizine (4) with columbamine (5) and palmatine (3) with (-)-tetrahydropalmatine (6). The alkaloids showed low cytotoxicity activity (CC50 30 - >90 µg/ml), strong to moderate anti-plasmodial activity (IC50 0.08 ± 0.001 - 2.4 ± 0.642 µg/ml, SI 1.5-1,154), moderate to weak anti-trypanosomal (IC50 2.80 ± 0.001 - 14.3 ± 0.001 µg/ml, SI 2.3-28.1) and anti-leishmanial activity IC50 2.7 ± 0.001 - 20.4 ± 0.003 µg/ml, SI 1.7-15.6). CONCLUSION: The strong anti-plasmodial activity makes these alkaloids good lead structures for drug development programs.


Subject(s)
Annonaceae/chemistry , Antiprotozoal Agents/pharmacology , Aporphines/pharmacology , Berberine Alkaloids/pharmacology , Leishmania donovani/drug effects , Plasmodium falciparum/drug effects , Trypanosoma brucei rhodesiense/drug effects , Antimalarials/analysis , Antimalarials/pharmacology , Antiprotozoal Agents/analysis , Aporphines/analysis , Berberine Alkaloids/analysis , Drug Resistance, Multiple/drug effects , Inhibitory Concentration 50 , Phytotherapy , Plant Extracts/analysis , Plant Extracts/pharmacology , Plant Leaves , Protozoan Infections/drug therapy , Tanzania , Trypanocidal Agents/analysis , Trypanocidal Agents/pharmacology
4.
J Chem Ecol ; 36(1): 113-21, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20119869

ABSTRACT

Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.


Subject(s)
Communicable Diseases/transmission , Communicable Diseases/veterinary , Disease Vectors , Animals , Climate Change , Communicable Disease Control/methods , Humans
5.
PLoS Negl Trop Dis ; 3(5): e435, 2009.
Article in English | MEDLINE | ID: mdl-19434232

ABSTRACT

We are attempting to develop cost-effective control methods for the important vector of sleeping sickness, Glossina fuscipes spp. Responses of the tsetse flies Glossina fuscipes fuscipes (in Kenya) and G. f. quanzensis (in Democratic Republic of Congo) to natural host odours are reported. Arrangements of electric nets were used to assess the effect of cattle-, human- and pig-odour on (1) the numbers of tsetse attracted to the odour source and (2) the proportion of flies that landed on a black target (1x1 m). In addition responses to monitor lizard (Varanus niloticus) were assessed in Kenya. The effects of all four odours on the proportion of tsetse that entered a biconical trap were also determined. Sources of natural host odour were produced by placing live hosts in a tent or metal hut (volumes approximately 16 m(3)) from which the air was exhausted at approximately 2000 L/min. Odours from cattle, pigs and humans had no significant effect on attraction of G. f. fuscipes but lizard odour doubled the catch (P<0.05). Similarly, mammalian odours had no significant effect on landing or trap entry whereas lizard odour increased these responses significantly: landing responses increased significantly by 22% for males and 10% for females; the increase in trap efficiency was relatively slight (5-10%) and not always significant. For G. f. quanzensis, only pig odour had a consistent effect, doubling the catch of females attracted to the source and increasing the landing response for females by approximately 15%. Dispensing CO(2) at doses equivalent to natural hosts suggested that the response of G. f. fuscipes to lizard odour was not due to CO(2). For G. f. quanzensis, pig odour and CO(2) attracted similar numbers of tsetse, but CO(2) had no material effect on the landing response. The results suggest that identifying kairomones present in lizard odour for G. f. fuscipes and pig odour for G. f. quanzensis may improve the performance of targets for controlling these species.


Subject(s)
Insect Control/methods , Odorants , Trypanosomiasis, African/prevention & control , Tsetse Flies/parasitology , Animals , Cattle , Female , Humans , Insect Vectors/parasitology , Male , Swine , Trypanosomiasis, African/parasitology
6.
Acta Trop ; 95(3): 210-8, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16018957

ABSTRACT

Volatile oils extracted by hydrodistillation from six plant species growing in the Kenyan coast, Croton pseudopulchellus Pax, Mkilua fragrans Verdc. (Annonaceae), Endostemon tereticaulis (poir.) Ashby, Ocimum forskolei Benth., Ocimum fischeri Guerke and Plectranthus longipes Baker (Labiateae), were evaluated for repellency on forearms of human volunteers against Anopheles gambiae sensu stricto. All oils were found to be more repellent (RC50 range = 0.67-9.21 x 10(-5) mg cm(-2)) than DEET (RC50 = 33 x 10(-5) mg cm(-2)). The individual components of the oils were identified by GC-MS and GC co-injections with authentic standards. The repellency of 15 of the main constituents of the different oils (which had not been previously assayed) was evaluated. Although some of these showed relatively high individual repellencies, none was comparable to the parent essential oils. Partial synthetic blends of selected constituents with moderate or relatively high individual repellency against the vector were also assayed. Four of these exhibited activities comparable to or higher than those of the corresponding parent oils, indicating interesting blend effects in the repellent action of the oils against the mosquito. The implication of these results in the utilization of the plants is discussed.


Subject(s)
Anopheles/drug effects , Insect Repellents/pharmacology , Oils, Volatile/pharmacology , Animals , Humans , Insect Repellents/analysis , Insect Repellents/isolation & purification , Kenya , Oils, Volatile/analysis , Oils, Volatile/isolation & purification
7.
Phytochemistry ; 65(20): 2797-802, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15474566

ABSTRACT

Essential oils of six plants growing in Kenya were screened for repellent activities against Anopheles gambiae sensu stricto. The oils of Conyza newii (Compositeae) and Plectranthus marrubioides (Labiateae) were the most repellent (RD50=8.9 x 10(-5) mg cm(-2), 95% CI) followed by Lippia javanica (Verbenaceae), Lippia ukambensis (Verbenaceae), Tetradenia riparia, (Iboza multiflora) (Labiateae) and Tarchonanthus camphoratus (Compositeae). Eight constituents of the different oils (perillyl alcohol, cis-verbenol, cis-carveol, geraniol, citronellal, perillaldehyde, caryophyllene oxide and a sesquiterpene alcohol) exhibited relatively high repellency. Four synthetic blends of the major components (present in > or = 1.5%) of the essential oils were found to exhibit comparable repellent activity to the parent oils.


Subject(s)
Anopheles/drug effects , Insect Repellents/pharmacology , Oils, Volatile/pharmacology , Plants/chemistry , Animals , Kenya , Oils, Volatile/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...