Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 11(10): e0058422, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36094180

ABSTRACT

Nearly complete genomes of 49 novel foot-and-mouth disease virus (FMDV) SAT1 strains acquired from oropharyngeal fluid samples from asymptomatic African Cape buffalo in Kenya in 2016 were determined. Sequences were from primary passage or plaque-purified dually SAT1/SAT2-infected samples. These sequences are important for elucidation of the molecular epidemiology of persistent and subclinical FMDV infections.

2.
Microbiol Resour Announc ; 11(10): e0058522, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36094207

ABSTRACT

Foot-and-mouth disease virus (FMDV) SAT2 sequences were acquired from Cape buffalo in Kenya in 2016, from either primary passage (n = 38) or plaque purification of dually SAT1/SAT2-infected samples (n = 61). All samples were derived from asymptomatic animals. These sequences contribute to our understanding of FMDV diversity in reservoirs and during subclinical FMDV infections.

3.
Trop Anim Health Prod ; 54(5): 332, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36175571

ABSTRACT

Agricultural use of antimicrobials in food animal production may contribute to the global emergence of antimicrobial resistance (AMR). However, considerable gaps exist in research on the use of antimicrobial drugs (AMDs) in food animals in small-scale production systems in low- and middle-income countries, despite the minimal regulation of antimicrobials in such regions. The aim of this study was to identify factors that may influence AMD use in livestock among pastoral communities in Kenya. We collected data related to household and herd demographics, herd health, and herd management from 55 households in the Maasai Mara ecosystem, Kenya, between 2018 and 2019. We used multi-model logistic regression inference (supervised machine learning) to ascertain trends in AMD use within these households. AMD use in cattle was significantly associated with AMD use in sheep and goats (p = 0.05), implying that decisions regarding AMD use in cattle or sheep and goats were interdependent. AMD use in sheep and goats was negatively associated with vaccination against the foot and mouth disease (FMD) virus in cattle (OR = 0.06, 95% CI 0.01-0.67, p = 0.02). Less AMD use was observed for vaccine-preventable diseases like contagious ecthyma when households had access to state veterinarians (OR = 0.06, p = 0.05, 95% CI 0.004-0.96). Overall, decisions to use AMDs were associated with vaccine usage, occurrence of respiratory diseases, and access to animal health advice. This hypothesis-generating study suggests that applying community-centric methods may be necessary to understand the use of AMDs in pastoral communities.


Subject(s)
Anti-Infective Agents , Foot-and-Mouth Disease Virus , Veterinarians , Animals , Anti-Infective Agents/therapeutic use , Cattle , Ecosystem , Goats , Humans , Kenya/epidemiology , Sheep
4.
Viruses ; 14(5)2022 04 25.
Article in English | MEDLINE | ID: mdl-35632639

ABSTRACT

African buffalo are the natural reservoirs of the SAT serotypes of foot-and-mouth disease virus (FMDV) in sub-Saharan Africa. Most buffalo are exposed to multiple FMDV serotypes early in life, and a proportion of them become persistently infected carriers. Understanding the genetic diversity and evolution of FMDV in carrier animals is critical to elucidate how FMDV persists in buffalo populations. In this study, we obtained oropharyngeal (OPF) fluid from naturally infected African buffalo, and characterized the genetic diversity of FMDV. Out of 54 FMDV-positive OPF, 5 were co-infected with SAT1 and SAT2 serotypes. From the five co-infected buffalo, we obtained eighty-nine plaque-purified isolates. Isolates obtained directly from OPF and plaque purification were sequenced using next-generation sequencing (NGS). Phylogenetic analyses of the sequences obtained from recombination-free protein-coding regions revealed a discrepancy in the topology of capsid proteins and non-structural proteins. Despite the high divergence in the capsid phylogeny between SAT1 and SAT2 serotypes, viruses from different serotypes that were collected from the same host had a high genetic similarity in non-structural protein-coding regions P2 and P3, suggesting interserotypic recombination. In two of the SAT1 and SAT2 co-infected buffalo identified at the first passage of viral isolation, the plaque-derived SAT2 genomes were distinctly grouped in two different genotypes. These genotypes were not initially detected with the NGS from the first passage (non-purified) virus isolation sample. In one animal with two SAT2 haplotypes, one plaque-derived chimeric sequence was found. These findings demonstrate within-host evolution through recombination and point mutation contributing to broad viral diversity in the wildlife reservoir. These mechanisms may be critical to FMDV persistence at the individual animal and population levels, and may contribute to the emergence of new viruses that have the ability to spill-over to livestock and other wildlife species.


Subject(s)
Coinfection , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Animals, Wild , Buffaloes , Capsid Proteins/genetics , Coinfection/veterinary , Foot-and-Mouth Disease/epidemiology , Kenya , Phylogeny , Serogroup
5.
Lancet Glob Health ; 10(4): e579-e584, 2022 04.
Article in English | MEDLINE | ID: mdl-35303467

ABSTRACT

The COVID-19 pandemic has underscored the need to strengthen national surveillance systems to protect a globally connected world. In low-income and middle-income countries, zoonotic disease surveillance has advanced considerably in the past two decades. However, surveillance efforts often prioritise urban and adjacent rural communities. Communities in remote rural areas have had far less support despite having routine exposure to zoonotic diseases due to frequent contact with domestic and wild animals, and restricted access to health care. Limited disease surveillance in remote rural areas is a crucial gap in global health security. Although this point has been made in the past, practical solutions on how to implement surveillance efficiently in these resource-limited and logistically challenging settings have yet to be discussed. We highlight why investing in disease surveillance in remote rural areas of low-income and middle-income countries will benefit the global community and review current approaches. Using semi-arid regions in Kenya as a case study, we provide a practical approach by which surveillance in remote rural areas can be strengthened and integrated into existing systems. This Viewpoint represents a transition from simply highlighting the need for a more holistic approach to disease surveillance to a solid plan for how this outcome might be achieved.


Subject(s)
COVID-19 , Global Health , Developing Countries , Humans , Pandemics , Poverty
6.
Vector Borne Zoonotic Dis ; 21(10): 809-816, 2021 10.
Article in English | MEDLINE | ID: mdl-34559011

ABSTRACT

Crimean Congo Hemorrhagic Fever (CCHF) is an emerging tick-borne zoonotic viral disease with the potential of causing public health emergencies. However, less is known about the role of wildlife and livestock in spreading the virus. Therefore, we aimed to assess how the interactions between African buffalo (Syncerus caffer) and cattle may influence the seroprevalence of CCHF across livestock-wildlife management systems in Kenya. The study included archived sera samples from buffalo and cattle from wildlife only habitats (Lake Nakuru National Park and Solio conservancy), open wildlife-livestock integrated habitats (Maasai Mara ecosystem and Meru National Park), and closed wildlife-livestock habitats (Ol Pejeta Conservancy) in Kenya. We analyzed 191 buffalo and 139 cattle sera using IDvet multispecies, double-antigen IgG enzyme-linked immunosorbent assay (ELISA). The seroprevalence toward Crimean Congo hemorrhagic fever virus (CCHFV) was significantly higher for buffalo compared to cattle (75.3% and 28.1%, respectively, p < 0.001). We obtained the highest seroprevalence among buffalo of 92.1% in closed wildlife only systems compared to 28.8% and 46.1% prevalence in closed-integrated and open-integrated systems, respectively. The regression coefficients were all negative for cattle compared to buffalo in both closed-integrated and open-integrated compared to wildlife only system. Our results show that CCHFV circulates among the diverse animal community in Kenya in spatially disconnected foci. The habitat overlap between cattle and buffalo makes cattle a "bridge species" or superspreader host for CCHFV and increases transmission risks to humans. The effect of animal management system on prevalence is depended on tick control on the cattle and not the animal per se. We conclude that buffalo, a host with a longer life span than livestock, is a reservoir and may serve as a sentinel population for longitudinal surveillance of CCHFV.


Subject(s)
Cattle Diseases , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Animals , Animals, Wild , Antibodies, Viral , Cattle , Cattle Diseases/epidemiology , Ecosystem , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Kenya/epidemiology , Livestock , Seroepidemiologic Studies
7.
Prev Vet Med ; 188: 105259, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33453561

ABSTRACT

Livestock movements are important drivers for infectious disease transmission. However, paucity of such data in pastoralist communities in rangeland ecosystems limits our understanding of their dynamics and hampers disease surveillance and control. The aim of this study was to investigate animal movement networks in a pastoralist community in Kenya, and assess network-based strategies for disease control. We used network analysis to characterize five types of between-village animal movement networks. We then evaluated implications of these networks for disease spread and control by quantifying topological changes in the network associated with targeted and random removal of nodes. To construct these networks, data were collected using standardized questionnaires (N = 165 households) from communities living within the Maasai Mara Ecosystem in southwestern Kenya. Our analyses show that the Maasai Mara National Reserve (MMNR), a protected wildlife area, was critical for maintaining village connectivity in the agistment network (dry season grazing), with MMNR-adjacent villages being highly utilized during the dry season. In terms of disease dynamics, the network-based basic reproduction number, R0, was sufficient to allow disease invasion in all the five networks, and removal of villages based on degree or betweenness was not efficient in reducing R0. However, we show that villages with high degree or betweenness may play an important role in maintaining network connectivity, which may not be captured by assessment of R0 alone. Such villages may function as potential "firebreaks." For example, targeted removal of highly connected village nodes was more effective at fragmenting each network than random removal of nodes, indicating that network-based targeting of interventions such as vaccination could potentially disrupt transmission pathways in the ecosystem. In conclusion, this work shows that animal movements have the potential to shape patterns of disease transmission in this ecosystem, with targeted interventions being a practical and efficient measure for disease control.


Subject(s)
Animal Husbandry , Cattle Diseases , Communicable Disease Control/statistics & numerical data , Disease Transmission, Infectious/veterinary , Goat Diseases , Sheep Diseases , Animals , Cattle , Cattle Diseases/prevention & control , Cattle Diseases/transmission , Disease Transmission, Infectious/statistics & numerical data , Goat Diseases/prevention & control , Goat Diseases/transmission , Goats , Kenya , Livestock , Models, Theoretical , Sheep , Sheep Diseases/prevention & control , Sheep Diseases/transmission , Sheep, Domestic , Transportation
8.
Transbound Emerg Dis ; 67(5): 2206-2221, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32303117

ABSTRACT

Quantitative knowledge on the contribution of African buffalo to the epidemiology of foot-and-mouth disease virus (FMDV) in East Africa is lacking, and this information is essential for the design of control programs in the region. The objective of this study was to investigate the epidemiology of FMDV in buffalo, including the role of buffalo in the circulation of FMDV in livestock populations. We collected blood and oropharyngeal fluids from 92 wild buffalo and 98 sympatric cattle in central Kenya and sequenced the virus' VP1 coding region. We show that FMDV has a high seroprevalence in buffalo (~77%) and targeted cattle (~93%). In addition, we recovered 80 FMDV sequences from buffalo, all of which were serotype SAT1 and SAT2, and four serotype O and A sequences from sympatric cattle. Notably, six individual buffalo were co-infected with both SAT1 and SAT2. Amongst sympatric buffalo and cattle, the fact that no SAT1 or 2 sequences were found in cattle suggests that transmission of FMDV from buffalo to sympatric cattle is rare. Similarly, there was no evidence that serotype O and A sequences found in cattle were transmitted to buffalo. However, viruses from FMDV outbreaks in cattle elsewhere in Kenya were closely related to SAT1 and SAT2 viruses found in buffalo in this study, suggesting that FMDV in cattle and buffalo do not constitute independently evolving populations. We also show that fine-scale geographic features, such as rivers, influence the circulation of FMDV in buffalo and that social segregation amongst sympatric herds may limit between-herd transmission. These results significantly advance our understanding of the ecology and molecular epidemiology of FMDV at wildlife-livestock interfaces in East Africa and will help to inform the design of control and surveillance strategies for this disease in the region.

10.
Int J Parasitol Parasites Wildl ; 4(2): 244-51, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26005635

ABSTRACT

Integrative management of wildlife and livestock requires a clear understanding of the diseases transmitted between the two populations. The tick-borne protozoan parasite Theileria parva causes two distinct diseases in cattle, East Coast fever and Corridor disease, following infection with parasites derived from cattle or buffalo, respectively. In this study, cattle were immunized with a live sporozoite vaccine containing three T. parva isolates (the Muguga cocktail), which has been used extensively and successfully in the field to protect against cattle-derived T. parva infection. The cattle were exposed in a natural field challenge site containing buffalo but no other cattle. The vaccine had no effect on the survival outcome in vaccinated animals compared to unvaccinated controls: nine out of the 12 cattle in each group succumbed to T. parva infection. The vaccine also had no effect on the clinical course of the disease. A combination of clinical and post mortem observations and laboratory analyses confirmed that the animals died of Corridor disease. The results clearly indicate that the Muguga cocktail vaccine does not provide protection against buffalo-derived T. parva at this site and highlight the need to evaluate the impact of the composition of challenge T. parva populations on vaccine success in areas where buffalo and cattle are present.

SELECTION OF CITATIONS
SEARCH DETAIL
...