Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Opt Soc Am A Opt Image Sci Vis ; 38(8): 1130, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34613306

ABSTRACT

Corrections are given for errors in the presentation of equations in J. Opt. Soc. Am. A34, 1187 (2017)JOAOD60740-323210.1364/JOSAA.34.001187.

2.
Appl Opt ; 57(28): 8314-8319, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30461783

ABSTRACT

Underwater optical wireless communications (UOWC) performance is affected by turbulence. However, not much research has been carried out to estimate the probability density function (PDF) of the received optical power. In this paper, we investigate the effect of turbulence on the UOWC system using a new experimental setup with a variable link span in a water pool. Different turbulence levels are created by changing the temperature and the rate of an injected water flow in the pool water to obtain the PDF. Results show that lognormal distribution closely matches the measured PDF for a range of link spans. In UOWC systems, the link span is one of the main factors influencing fluctuations of the received optical power, and it has not been thoroughly investigated. In this work, the scintillation index and turbulence-induced power loss are obtained for a range of turbulence strengths and transmission link spans. Finally, we show that there is a good agreement between the experimental and simulated results.

3.
J Opt Soc Am A Opt Image Sci Vis ; 34(7): 1187-1193, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-29036128

ABSTRACT

Turbulence affects the performance of underwater wireless optical communications (UWOC). Although multiple scattering and absorption have been previously investigated by means of physical simulation models, still a physical simulation model is needed for UWOC with turbulence. In this paper, we propose a Monte Carlo simulation model for UWOC in turbulent oceanic clear water, which is far less computationally intensive than approaches based on computational fluid dynamics. The model is based on the variation of refractive index in a horizontal link. Results show that the proposed simulation model correctly reproduces lognormal probability density function of the received intensity for weak and moderate turbulence regimes. Results presented match well with experimental data reported for weak turbulence. Furthermore, scintillation index and turbulence-induced power loss versus link span are exhibited for different refractive index variations.

SELECTION OF CITATIONS
SEARCH DETAIL
...