Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Curr Biol ; 34(3): 531-540.e5, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38228148

ABSTRACT

The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of locomotion, selecting for a common search motif in which straight movements through resource-poor regions alternate with zig-zag exploration in resource-rich domains. For example, during local search, flying flies spontaneously execute rapid flight turns, called body saccades, but suppress these maneuvers during long-distance dispersal or when surging upstream toward an attractive odor. Here, we describe the key cellular components of a neural network in flies that generate spontaneous turns as well as a specialized pair of neurons that inhibits the network and suppresses turning. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional units-one for right turns and one for left-with each unit consisting of an excitatory (DNae014) and an inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly, we identified a pair of large, distinct interneurons (VES041) that form inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As predicted by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it promotes straight flight to regulate the transition between local search and long-distance dispersal. These results thus identify the key elements of a network that may play a crucial role in foraging ecology.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Drosophila/physiology , Drosophila melanogaster/physiology , Flight, Animal/physiology , Neurons/physiology , Locomotion
2.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37732262

ABSTRACT

The clumped distribution of resources in the world has influenced the pattern of foraging behavior since the origins of life, selecting for a common locomotor search motif in which straight movements through resource-poor regions alternate with zig -zag exploration in resource-rich domains. For example, flies execute rapid changes in flight heading called body saccades during local search, but suppress these turns during long-distance dispersal or when surging upwind after encountering an attractive odor plume. Here, we describe the key cellular components of a neural network in flies that generates spontaneous turns as well as a specialized neuron that inhibits the network to promote straight flight. Using 2-photon imaging, optogenetic activation, and genetic ablation, we show that only four descending neurons appear sufficient to generate the descending commands to execute flight saccades. The network is organized into two functional couplets-one for right turns and one for left-with each couplet consisting of an excitatory (DNae014) and inhibitory (DNb01) neuron that project to the flight motor neuropil within the ventral nerve cord. Using resources from recently published connectomes of the fly brain, we identified a large, unique interneuron (VES041) that forms inhibitory connections to all four saccade command neurons and created specific genetic driver lines for this cell. As suggested by its connectivity, activation of VES041 strongly suppresses saccades, suggesting that it regulates the transition between local search and long-distance dispersal. These results thus identify the critical elements of a network that not only structures the locomotor behavior of flies, but may also play a crucial role in their natural foraging ecology.

3.
Elife ; 102021 03 23.
Article in English | MEDLINE | ID: mdl-33755020

ABSTRACT

Many insects use patterns of polarized light in the sky to orient and navigate. Here, we functionally characterize neural circuitry in the fruit fly, Drosophila melanogaster, that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly's sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the 'sky compass' pathways described in other insects. We detail how a consistent, map-like organization of neural tunings in the peripheral visual system is transformed into a reduced representation suited to flexible processing in the central brain. This study identifies computational motifs of the transformation, enabling mechanistic comparisons of multisensory integration and central processing for navigation in the brains of insects.


Subject(s)
Drosophila melanogaster/physiology , Ultraviolet Rays , Visual Pathways , Animals , Brain/physiology , Female , Neurons , Optic Lobe, Nonmammalian , Orientation, Spatial
4.
Dev Biol ; 475: 165-180, 2021 07.
Article in English | MEDLINE | ID: mdl-32017903

ABSTRACT

Complex nervous systems have a modular architecture, whereby reiterative groups of neurons ("modules") that share certain structural and functional properties are integrated into large neural circuits. Neurons develop from proliferating progenitor cells that, based on their location and time of appearance, are defined by certain genetic programs. Given that genes expressed by a given progenitor play a fundamental role in determining the properties of its lineage (i.e., the neurons descended from that progenitor), one efficient developmental strategy would be to have lineages give rise to the structural modules of the mature nervous system. It is clear that this strategy plays an important role in neural development of many invertebrate animals, notably insects, where the availability of genetic techniques has made it possible to analyze the precise relationship between neuronal origin and differentiation since several decades. Similar techniques, developed more recently in the vertebrate field, reveal that functional modules of the mammalian cerebral cortex are also likely products of developmentally defined lineages. We will review studies that relate cell lineage to circuitry and function from a comparative developmental perspective, aiming at enhancing our understanding of neural progenitors and their lineages, and translating findings acquired in different model systems into a common conceptual framework.


Subject(s)
Cell Lineage/physiology , Nerve Net/cytology , Neurons/cytology , Animals , Brain/cytology , Cell Differentiation , Cell Lineage/genetics , Cerebral Cortex/cytology , Gene Expression Regulation, Developmental , Humans , Nerve Net/metabolism , Nerve Net/physiology , Nervous System/cytology , Neurons/metabolism , Neurons/physiology , Stem Cells/cytology
5.
Curr Biol ; 29(3): 412-425.e3, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30661802

ABSTRACT

Serial electron microscopic analysis shows that the Drosophila brain at hatching possesses a large fraction of developmentally arrested neurons with a small soma, heterochromatin-rich nucleus, and unbranched axon lacking synapses. We digitally reconstructed all 802 "small undifferentiated" (SU) neurons and assigned them to the known brain lineages. By establishing the coordinates and reconstructing trajectories of the SU neuron tracts, we provide a framework of landmarks for the ongoing analyses of the L1 brain circuitry. To address the later fate of SU neurons, we focused on the 54 SU neurons belonging to the DM1-DM4 lineages, which generate all columnar neurons of the central complex. Regarding their topologically ordered projection pattern, these neurons form an embryonic nucleus of the fan-shaped body ("FB pioneers"). Fan-shaped body pioneers survive into the adult stage, where they develop into a specific class of bi-columnar elements, the pontine neurons. Later born, unicolumnar DM1-DM4 neurons fasciculate with the fan-shaped body pioneers. Selective ablation of the fan-shaped body pioneers altered the architecture of the larval fan-shaped body primordium but did not result in gross abnormalities of the trajectories of unicolumnar neurons, indicating that axonal pathfinding of the two systems may be controlled independently. Our comprehensive spatial and developmental analysis of the SU neurons adds to our understanding of the establishment of neuronal circuitry.


Subject(s)
Drosophila melanogaster/physiology , Animals , Cell Lineage/physiology , Drosophila melanogaster/embryology , Drosophila melanogaster/ultrastructure , Larva/physiology , Larva/ultrastructure , Microscopy, Electron, Transmission , Neurons/physiology , Neurons/ultrastructure
6.
Neuron ; 97(2): 378-389.e4, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29307711

ABSTRACT

Sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila are integral to sleep homeostasis, but how these cells impose sleep on the organism is unknown. We report that dFB neurons communicate via inhibitory transmitters, including allatostatin-A (AstA), with interneurons connecting the superior arch with the ellipsoid body of the central complex. These "helicon cells" express the galanin receptor homolog AstA-R1, respond to visual input, gate locomotion, and are inhibited by AstA, suggesting that dFB neurons promote rest by suppressing visually guided movement. Sleep changes caused by enhanced or diminished allatostatinergic transmission from dFB neurons and by inhibition or optogenetic stimulation of helicon cells support this notion. Helicon cells provide excitation to R2 neurons of the ellipsoid body, whose activity-dependent plasticity signals rising sleep pressure to the dFB. By virtue of this autoregulatory loop, dFB-mediated inhibition interrupts processes that incur a sleep debt, allowing restorative sleep to rebalance the books. VIDEO ABSTRACT.


Subject(s)
Drosophila melanogaster/physiology , Interneurons/physiology , Sleep/physiology , Animals , Brain/physiology , Circadian Rhythm , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Excitatory Postsynaptic Potentials/physiology , Female , Homeostasis , Insect Hormones/physiology , Light , Locomotion/radiation effects , Male , Membrane Potentials , Nerve Tissue Proteins/physiology , Neurons/physiology , Optogenetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/physiology , Recombinant Fusion Proteins/metabolism , Vision, Ocular
7.
J Comp Neurol ; 526(1): 6-32, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28730682

ABSTRACT

The subesophageal zone (SEZ) of the Drosophila brain houses the circuitry underlying feeding behavior and is involved in many other aspects of sensory processing and locomotor control. Formed by the merging of four neuromeres, the internal architecture of the SEZ can be best understood by identifying segmentally reiterated landmarks emerging in the embryo and larva, and following the gradual changes by which these landmarks become integrated into the mature SEZ during metamorphosis. In previous works, the system of longitudinal fibers (connectives) and transverse axons (commissures) has been used as a scaffold that provides internal landmarks for the neuromeres of the larval ventral nerve cord. We have extended the analysis of this scaffold to the SEZ and, in addition, reconstructed the tracts formed by lineages and nerves in relationship to the connectives and commissures. As a result, we establish reliable criteria that define boundaries between the four neuromeres (tritocerebrum, mandibular neuromere, maxillary neuromere, labial neuromere) of the SEZ at all stages of development. Fascicles and lineage tracts also demarcate seven columnar neuropil domains (ventromedial, ventro-lateral, centromedial, central, centrolateral, dorsomedial, dorsolateral) identifiable throughout development. These anatomical subdivisions, presented in the form of an atlas including confocal sections and 3D digital models for the larval, pupal and adult stage, allowed us to describe the morphogenetic changes shaping the adult SEZ. Finally, we mapped MARCM-labeled clones of all secondary lineages of the SEZ to the newly established neuropil subdivisions. Our work will facilitate future studies of function and comparative anatomy of the SEZ.


Subject(s)
Brain , Cell Lineage/physiology , Drosophila , Metamorphosis, Biological , Neurons/cytology , Animals , Animals, Genetically Modified , Brain/anatomy & histology , Brain/embryology , Brain/growth & development , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila/anatomy & histology , Drosophila/embryology , Drosophila/growth & development , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional , Larva , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microscopy, Confocal , Neurons/metabolism , Neuropil/metabolism
8.
J Comp Neurol ; 525(16): 3458-3475, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28675433

ABSTRACT

The anterior visual pathway (AVP) conducts visual information from the medulla of the optic lobe via the anterior optic tubercle (AOTU) and bulb (BU) to the ellipsoid body (EB) of the central complex. The anatomically defined neuron classes connecting the AOTU, BU, and EB represent discrete lineages, genetically and developmentally specified sets of cells derived from common progenitors (Omoto et al., Current Biology, 27, 1098-1110, 2017). In this article, we have analyzed the formation of the AVP from early larval to adult stages. The immature fiber tracts of the AVP, formed by secondary neurons of lineages DALcl1/2 and DALv2, assemble into structurally distinct primordia of the AOTU, BU, and EB within the late larval brain. During the early pupal period (P6-P48) these primordia grow in size and differentiate into the definitive subcompartments of the AOTU, BU, and EB. The primordium of the EB has a complex composition. DALv2 neurons form the anterior EB primordium, which starts out as a bilateral structure, then crosses the midline between P6 and P12, and subsequently bends to adopt the ring shape of the mature EB. Columnar neurons of the central complex, generated by the type II lineages DM1-4, form the posterior EB primordium. Starting out as an integral part of the fan-shaped body primordium, the posterior EB primordium moves forward and merges with the anterior EB primordium. We document the extension of neuropil glia around the nascent EB and BU, and analyze the relationship of primary and secondary neurons of the AVP lineages.


Subject(s)
Brain/physiology , Cell Lineage , Gene Expression Regulation, Developmental/physiology , Neurons/metabolism , Visual Pathways/physiology , Animals , Animals, Genetically Modified , Cell Adhesion Molecules, Neuronal/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Larva , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Glycoproteins/metabolism , Microscopy, Confocal , Neurons/cytology , Neuropil/metabolism , Neuropil/physiology , Optic Nerve/physiology , Pupa , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Curr Opin Insect Sci ; 18: 96-104, 2016 12.
Article in English | MEDLINE | ID: mdl-27939718

ABSTRACT

Glia of vertebrates and invertebrates alike represents a diverse population of cells in the nervous system, divided into numerous classes with different structural and functional characteristics. In insects, glia fall within three basic classes: surface, cell body, and neuropil glia. Due to the glial subclass-specific markers and genetic tools available in Drosophila, it is possible to establish the progenitor origin of these different populations and reconstruct their migration and differentiation during development. We review, and posit when appropriate, recently elucidated aspects of glial developmental dynamics. In particular, we focus on the relationships between mature glial subclasses of the larval nervous system (primary glia), born in the embryo, and glia of the adult (secondary glia), generated in the larva.


Subject(s)
Drosophila/cytology , Animals , Cell Lineage , Nervous System/cytology , Neurogenesis , Neuroglia/cytology
10.
Dev Neurobiol ; 76(4): 434-51, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26178322

ABSTRACT

The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe.


Subject(s)
Cell Lineage/physiology , Cell Movement/physiology , Drosophila/growth & development , Drosophila/physiology , Animals , Animals, Genetically Modified , Brain/anatomy & histology , Brain/growth & development , Brain/physiology , Cell Death/physiology , Drosophila/anatomy & histology , Drosophila Proteins/metabolism , Imaging, Three-Dimensional , Immunohistochemistry , Larva , Microscopy, Confocal , Microscopy, Electron , Neural Pathways/anatomy & histology , Neural Pathways/growth & development , Neural Pathways/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/physiology
11.
Elife ; 42015 Aug 28.
Article in English | MEDLINE | ID: mdl-26317380

ABSTRACT

Genetic techniques have shed new light on the organization of the neurons in the ventral nervous system of the fruit fly.


Subject(s)
Central Nervous System/anatomy & histology , Drosophila/anatomy & histology , Drosophila/physiology , Neurons/physiology , Animals
12.
Dev Biol ; 406(1): 14-39, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26141956

ABSTRACT

Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses.


Subject(s)
Brain/embryology , Brain/metabolism , Drosophila/embryology , Larva/metabolism , Animals , Axons/metabolism , Brain/anatomy & histology , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules, Neuronal/biosynthesis , Cell Adhesion Molecules, Neuronal/metabolism , Cell Lineage , Drosophila/anatomy & histology , Drosophila/metabolism , Drosophila Proteins/biosynthesis , Larva/anatomy & histology , Membrane Glycoproteins/biosynthesis , Neurons/metabolism , Neuropil/metabolism
13.
Dev Biol ; 384(2): 258-89, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23872236

ABSTRACT

The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.


Subject(s)
Brain/growth & development , Drosophila/growth & development , Animals , Cell Lineage , Microscopy, Confocal
14.
Dev Biol ; 384(2): 228-57, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23880429

ABSTRACT

Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).


Subject(s)
Body Patterning , Brain/growth & development , Drosophila/growth & development , Animals , Humans , Metamorphosis, Biological
15.
J Membr Biol ; 245(12): 841-57, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22918627

ABSTRACT

The aims of this study were to optimize the experimental conditions for labeling extracellularly oriented, solvent-exposed cysteine residues of γ-aminobutyric acid transporter 1 (GAT1) with the membrane-impermeant sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET) and to characterize the functional and pharmacological consequences of labeling on transporter steady-state and presteady-state kinetic properties. We expressed human GAT1 in Xenopus laevis oocytes and used radiotracer and electrophysiological methods to assay transporter function before and after sulfhydryl modification with MTSET. In the presence of NaCl, transporter exposure to MTSET (1-2.5 mM for 5-20 min) led to partial inhibition of GAT1-mediated transport, and this loss of function was completely reversed by the reducing reagent dithiothreitol. MTSET treatment had no functional effect on the mutant GAT1 C74A, whereas the membrane-permeant reagents N-ethylmaleimide and tetramethylrhodamine-6-maleimide inhibited GABA transport mediated by GAT1 C74A. Ion replacement experiments indicated that MTSET labeling of GAT1 could be driven to completion when valproate replaced chloride in the labeling buffer, suggesting that valproate induces a GAT1 conformation that significantly increases C74 accessibility to the extracellular fluid. Following partial inhibition by MTSET, there was a proportional reduction in both the presteady-state and steady-state macroscopic signals, and the functional and pharmacological properties of the remaining signals were indistinguishable from those of unlabeled GAT1. Therefore, covalent modification of GAT1 at C74 results in completely nonfunctional as well as electrically silent transporters.


Subject(s)
Cysteine/chemistry , GABA Plasma Membrane Transport Proteins/metabolism , Mesylates/chemistry , Sulfhydryl Reagents/chemistry , Animals , Dithiothreitol/pharmacology , Ethylmaleimide/chemistry , Female , GABA Plasma Membrane Transport Proteins/chemistry , GABA Plasma Membrane Transport Proteins/genetics , Gene Expression , Humans , Kinetics , Mutation , Oocytes/cytology , Oocytes/metabolism , Patch-Clamp Techniques , Rhodamines/chemistry , Sodium Chloride/pharmacology , Transfection , Valproic Acid/chemistry , Valproic Acid/pharmacology , Xenopus laevis , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...