Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(11): 13086-13099, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524478

ABSTRACT

Addressing industrial wastewater treatment challenges and removing hazardous organic pollutants, such as carcinogenic methyl orange (MO) and azo dyes, is a pressing concern. This study explores the use of the Zea mays envelope, an agricultural waste product, to produce Z. mays activated carbon (ZMAC) through the chemical activation of maize envelopes with phosphoric acid. Various analytical techniques, including FTIR, XRD, TGA, DSC, and SEM, characterize ZMAC. Results show that ZMAC exhibits an impressive monolayer adsorption capacity of 66.2 mg/g for MO. The Langmuir isotherm model fits the experimental data well, indicating monolayer coverage of the MO on the ZMAC surface. The pH-sensitive adsorption process demonstrates an optimal removal efficiency at pH 4. ZMAC follows the pseudo-second-order kinetic model, and diffusion rate constant analysis identifies three consecutive stages in the adsorption process. Moreover, the uptake of MO ions by ZMAC is identified as an exothermic and spontaneous process. Reusability tests demonstrate efficient regeneration of ZMAC up to five times with 1 mL of 2 M HNO3 in each cycle, without sorbent mass loss. Thermodynamic analysis shows an increase in the uptake capacity from 66.2 to 73.2 mg/g with temperature elevation. This study offers practical solutions for industrial wastewater treatment challenges, providing an environmentally sustainable and effective approach to mitigate the risks associated with hazardous organic pollutants.

SELECTION OF CITATIONS
SEARCH DETAIL
...