Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Pharmacol ; 64(3): 353-361, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37862131

ABSTRACT

Obesity combined with critical illness might increase the risk of acquiring infections and hence mortality. In this patient population the pharmacokinetics of antimicrobials vary significantly, making antimicrobial dosing challenging. The objective of this study was to assess the predictive performance of published population pharmacokinetic models of vancomycin in patients who are critically ill or obese for a cohort of critically ill patients who are obese. This was a multi-center retrospective study conducted at 2 hospitals. Adult patients with a body mass index of ≥30 kg/m2 were included. PubMed was searched for published population pharmacokinetic studies in patients who were critically ill or obese. External validation was performed using Monolix software. A total of 4 models were identified in patients who were obese and 5 models were identified in patients who were critically ill. In total, 138 patients who were critically ill and obese were included, and the most accurate models for these patients were the Goti and Roberts models. In our analysis, models in patients who were critically ill outperformed models in patients who were obese. When looking at the most accurate models, both the Goti and the Roberts models had patient characteristics similar to ours in terms of age and creatinine clearance. This indicates that when selecting the proper model to apply in practice, it is important to account for all relevant variables, besides obesity.


Subject(s)
Anti-Infective Agents , Vancomycin , Adult , Humans , Vancomycin/pharmacokinetics , Critical Illness , Retrospective Studies , Obesity/drug therapy , Anti-Bacterial Agents/pharmacokinetics
2.
Saudi Pharm J ; 29(11): 1272-1277, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34819789

ABSTRACT

BACKGROUND: Meropenem is commonly used in the ICU to treat gram-negative infections. Due to various pathophysiological changes, critically ill patients are at higher risk of having subtherapeutic concentrations and hence have a higher risk of treatment failure-especially in regions where gram-negative drug resistance is increasing, such as Saudi Arabia. No studies have evaluated the pharmacokinetics of meropenem in critically ill patients in Saudi Arabia. Our primary objective is to assess the percentage of patients achieving the therapeutic target for meropenem. METHODS: This prospective observational study was conducted in the ICUs of King Khalid University Hospital. Patient were included if >18 years-of-age and received meropenem for a clinically suspected or proven bacterial infection. The primary outcome was to assess the percentage of patients who achieved the pharmacokinetic/pharmacodynamic (PKPD) therapeutic target of a free trough concentration four times the MIC. The secondary outcome was to estimate the pharmacokinetics of meropenem. Pharmacokinetic analysis was performed using Monolix Suite 2020R1 (Lixoft, France). RESULTS: Trough concentrations were highly variable and ranged from <0.5 µg/mL to 39 µg/mL, with a mean ± SD trough concentration of 8.5 ± 8 µg/mL. Only 46% of patients achieved the therapeutic target. The only significant predictor of failing to achieve the PKPD target was augmented renal clearance. CONCLUSION: In conclusion, more than half of our patients did not achieve the PKPD target. Thus, there is a need for better dosing strategies of meropenem in critically ill patients in Saudi Arabia such as extended and continuous infusion.

3.
SAGE Open Med ; 9: 20503121211049931, 2021.
Article in English | MEDLINE | ID: mdl-34659762

ABSTRACT

INTRODUCTION: Critically ill COVID-19 patients are at increased risk of thrombosis with an enhanced risk of bleeding. We aimed to explore the role of anti-factor Xa levels in optimizing the high-intensity anticoagulation's safety and efficacy and finding possible associations between D-dimer levels, cytokine storm markers, and COVID-19-induced coagulopathy or thrombophilia. METHODS: Retrospective cohort study conducted on 69 critically ill COVID-19 patients who received three regimens of higher intensity anticoagulation. RESULTS: Seventeen patients (24.6%) received high-dose enoxaparin prophylaxis, 29 patients (42%) received therapeutic doses of enoxaparin, and 23 patients (33.3%) were on therapeutic unfractionated heparin infusion. Fewer than one-third of the whole cohort (n = 22; 31.8%) achieved the target range of anti-factor Xa. The patients were divided into three subgroups based on anti-factor Xa target status within each anticoagulation regimen; when compared, the only association observed among them was for interleukin-6 levels, which were significantly higher in both the "above the expected range" and "below the expected range" groups compared with the "within the expected range" group (p = 0.009). Major bleeding episodes occurred in 14 (20.3%) patients and were non-significantly more frequent in the "below the expected anti-factor Xa range group" (p = 0.415). Seven patients (10.1%) developed thrombosis. The majority of patients had anti-factor Xa levels below the expected ranges (four patients, 57.1%). CONCLUSION: Conventional anti-factor Xa ranges may not be appropriate as a predictive surrogate for bleeding in critically ill COVID-19. The clinical decision to initiate therapeutic anticoagulation preemptively may be individualized according to thrombosis and bleeding risks. Cytokine storm markers, namely, interleukin-6, may play a role in COVID-19-induced coagulopathy or thrombophilia.

SELECTION OF CITATIONS
SEARCH DETAIL
...