Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Comput Biol Med ; 178: 108702, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38878397

ABSTRACT

Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.

2.
Curr Drug Deliv ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37424346

ABSTRACT

The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.

3.
Int J Pharm ; 642: 123144, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37330155

ABSTRACT

Oral cancer accounts for more than 350,000 cases worldwide with 90% of them being oral squamous cell carcinomas (OSCC). The current treatment modalities of chemoradiation have poor outcomes along with harmful effects to neighbouring healthy tissues. The present study aimed to deliver Erlotinib (ERB), locally at the site of tumor arising in the oral cavity. ERB was encapsulated in liposomal formulations (ERB Lipo) and optimized using full factorial, 32 experimental design. The optimized batch was then coated with chitosan to obtain CS-ERB Lipo and were characterized further. Both liposomal ERB formulations had size <200 nm and PDI < 0.4. Zeta potential was upto -50 mV for ERB Lipo and upto +25 mV for CS-ERB Lipo indicating stable formulation. Liposomal formulations were freeze dried and loaded into gel to study in-vitro release and chemotherapeutic evaluation. CS-ERB Lipo showed sustained release upto 36 h from gel as compared to control formulation. In-vitro cell viability studies showed potent anti-cancer activity on KB-cells. In-vivo studies showed better pharmacological efficacy in terms of tumor volume reduction for ERB Lipo gel (49.19%) and CS-ERB Lipo gel (55.27%) as compared to plain ERB Gel (38.88%) applied locally. Histology also revealed that formulation could alleviate dysplasia condition to hyperplasia. The locoregional therapy of ERB Lipo gel and CS-ERB Lipo gel thus show promising outcome in improving pre-malignant and early-stage oral cavity cancers.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Erlotinib Hydrochloride , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/drug therapy , Liposomes
4.
Int J Biol Macromol ; 244: 125332, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37302632

ABSTRACT

Ulcerative colitis (UC) with continuous and extensive inflammation is limited to the colon mucosa and can lead to abdominal pain, diarrhea, and rectal bleeding. Conventional therapies are associated with several limitations, such as systemic side effects, drug degradation, inactivation, and limited drug uptake, leading to poor bioavailability. These restrictions necessitate drug delivery to the colon so that the drug passes through the stomach unchanged and has selective access to the colon. The present study aimed to formulate 5-aminosalicylic acid (5-ASA) and berberine (BBR) in chitosan nanoparticles cross-linked by HPMCP (hydroxypropyl methylcellulose phthalate) as a colon drug delivery system for UC. Spherical nanoparticles were prepared. They showed appropriate drug release in the simulated intestinal fluid (SIF), while the release did not occur in the simulated gastric fluid (SGF). They improved disease activity parameters (DAI) and ulcer index, increased the length of the colon, and decreased the wet weight of the colon. Furthermore, histopathological colon studies showed an improved therapeutic effect of 5-ASA/HPMCP/CSNPs and BBR/HPMCP/CSNPs. In conclusion, although 5-ASA/HPMCP/CSNPs showed the best effect in the treatment of UC, BBR/HPMCP/CSNPs, and 5-ASA/BBR/HPMCP/CSNPs were also effective in vivo study, and this study anticipated they could be helpful in future clinical applications for the management of UC.


Subject(s)
Berberine , Chitosan , Colitis, Ulcerative , Nanoparticles , Rats , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Mesalamine/pharmacology , Mesalamine/therapeutic use , Chitosan/therapeutic use , Berberine/pharmacology , Hydrogen-Ion Concentration
5.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986477

ABSTRACT

Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.

6.
Biomedicines ; 11(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36672677

ABSTRACT

Immunotherapy is rapidly emerging as a promising approach against cancer. In the last decade, various immunological mechanisms have been targeted to induce an increase in the immune response against cancer cells. However, despite promising results, many patients show partial response, resistance, or serious toxicities. A promising way to overcome this is the use of immunotherapeutic approaches, in combination with other potential therapeutic approaches. Aberrant epigenetic modifications play an important role in carcinogenesis and its progression, as well as in the functioning of immune cells. Thus, therapeutic approaches targeting aberrant epigenetic mechanisms and the immune response might provide an effective antitumor effect. Further, the recent development of potent epigenetic drugs and immunomodulators gives hope to this combinatorial approach. In this review, we summarize the synergy mechanism between epigenetic therapies and immunotherapy for the treatment of cancer, and discuss recent advancements in the translation of this approach.

7.
Pharmaceutics ; 16(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38258068

ABSTRACT

Alzheimer's disease, a progressive neurodegenerative condition, is characterized by a gradual decline in cognitive functions. Current treatment approaches primarily involve the administration of medications through oral, parenteral, and transdermal routes, aiming to improve cognitive function and alleviate symptoms. However, these treatments face limitations, such as low bioavailability and inadequate permeation. Alternative invasive methods, while explored, often entail discomfort and require specialized assistance. Therefore, the development of a non-invasive and efficient delivery system is crucial. Intranasal delivery has emerged as a potential solution, although it is constrained by the unique conditions of the nasal cavity. An innovative approach involves the use of nano-carriers based on nanotechnology for intranasal delivery. This strategy has the potential to overcome current limitations by providing enhanced bioavailability, improved permeation, effective traversal of the blood-brain barrier, extended retention within the body, and precise targeting of the brain. The comprehensive review focuses on the advancements in designing various types of nano-carriers, including polymeric nanoparticles, metal nanoparticles, lipid nanoparticles, liposomes, nanoemulsions, Quantum dots, and dendrimers. These nano-carriers are specifically tailored for the intranasal delivery of therapeutic agents aimed at combatting Alzheimer's disease. In summary, the development and utilization of intranasal delivery systems based on nanotechnology show significant potential in surmounting the constraints of current Alzheimer's disease treatment strategies. Nevertheless, it is essential to acknowledge regulatory as well as toxicity concerns associated with this route; meticulous consideration is required when engineering a carrier. This comprehensive review underscores the potential to revolutionize Alzheimer's disease management and highlights the importance of addressing regulatory considerations for safe and effective implementations. Embracing this strategy could lead to substantial advancements in the field of Alzheimer's disease treatment.

8.
Expert Rev Anti Infect Ther ; 20(11): 1425-1433, 2022 11.
Article in English | MEDLINE | ID: mdl-36161803

ABSTRACT

INTRODUCTION: The reemergence of monkeypox virus in the twenty-first century, calls for an urgency in its control and preventive measures. There is a long-standing concern that the reemergence of monkeypox across countries could lead to another epidemic like the COVID-19 pandemic. Understanding the disease ecology, preventing its transmission could help curbing its spread. The established treatment protocols along with development of new antiviral agents and vaccines could play a pivotal role in controlling its transmission. AREAS COVERED: In this review, we summarize the different modes of transmission of this disease, the associated symptoms, the standard protocol of treatment, the available vaccines and use of alternative treatments. We have collated recent research on novel entities that could potentially treat monkeypox infection. EXPERT OPINION: The One Health approach fostered by the World Health Organization (WHO) for emergent and reemerging zoonotic diseases has to be implemented with a view to curb their transmission. The growing global population and increased inter-country travel has led to rapid spread of transmissible pathogens. Stigmatization, associated with lack of knowledge can be prevented by enhancing awareness campaigns. Vaccines need to be administered to high-risk individuals, and drug discovery efforts need to be intensified to combat such diseases.


Subject(s)
COVID-19 , Mpox (monkeypox) , Humans , Mpox (monkeypox)/drug therapy , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/prevention & control , Pandemics , COVID-19/prevention & control , Monkeypox virus , Antiviral Agents/therapeutic use
9.
Biomedicines ; 10(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36140237

ABSTRACT

Liposomes are tiny lipid-based vesicles composed of one or more lipid bilayers, which facilitate the encapsulation of hydrophilic, lipophilic, and amphiphilic biological active agents. The description of the physicochemical properties, formulation methods, characteristics, mechanisms of action, and large-scale manufacturing of liposomes as delivery systems are deeply discussed. The benefits, toxicity, and limitations of the use of liposomes in pharmacotherapeutics including in diagnostics, brain targeting, eye and cancer diseases, and in infections are provided. The experimental approaches that may reduce, or even bypass, the use of liposomal drug drawbacks is described. The application of liposomes in the treatment of numerous diseases is discussed.

10.
Expert Opin Drug Deliv ; 19(6): 653-670, 2022 06.
Article in English | MEDLINE | ID: mdl-35656670

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is the third most common cancer leading to death worldwide following breast and lung cancer with the incidence rate of 10%. The treatment comprises surgery, radiation, and ablation therapy depending upon the stage of cancer. AREAS COVERED: The review focuses on various drug delivery strategies explored to circumvent the major constraints associated with the conventional drug delivery systems-poor bioavailability, intra- and inter individual variability, exposure of normal cells to antineoplastic agents, and presence of efflux pump. All these attributes impact the effective delivery of chemotherapeutic agents at the tumor site. The various target specific drug delivery systems developed for colorectal cancer include pH-dependent, microbiologically triggered, time-dependent, magnetically driven, pressure-dependent, prodrug/polysaccharide-based, osmotic and ligand-mediated systems. This review enumerates novel target specific approaches developed and investigated for potential utility in CRC therapeutics. EXPERT OPINION: The limitations of conventional delivery systems can be overcome by the development of colon-specific targeted drug delivery systems that overcome the obstacles of nonspecific biodistribution, drug resistance, and unwanted adverse effects of conventional drug delivery systems. In addition, nanotechnology approaches help to increase drug solubility, bioavailability, reduce side effects, and provide superior drug response in CRC.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Nanoparticles , Prodrugs , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Delivery Systems , Humans , Prodrugs/therapeutic use , Tissue Distribution
11.
Antibiotics (Basel) ; 11(6)2022 May 29.
Article in English | MEDLINE | ID: mdl-35740136

ABSTRACT

Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging.

12.
Expert Opin Drug Deliv ; 19(5): 559-576, 2022 05.
Article in English | MEDLINE | ID: mdl-35534912

ABSTRACT

INTRODUCTION: Poly(lactic-co-glycolic acid) (PLGA) has been used in many long-acting drug formulations, which have been approved by the US Food and Drug Administration (FDA). PLGA has unique physicochemical properties, which results in complexities in the formulation, characterization, and evaluation of generic products. To address the challenges of generic development of PLGA-based products, the FDA has established an extensive research program to investigate novel methods and tools to aid product development and regulatory review. AREAS COVERED: This review article intends to provide a comprehensive review on physicochemical properties of PLGA polymer, characterization, formulation, analytical aspects, manufacturing conditions on product performance, in-vitro release testing, and bioequivalence. Current research on formulation development was done as per QbD in vitro release testing methods, regulatory research outcomes, and bioequivalence. EXPERT OPINION: The development of PLGA-based long-acting injectables is promising and challenging when considering the numerous interrelated delivery-related factors. Achieving a successful formulation requires a thorough understanding of the critical interactions between polymer/drug properties, release profiles over time, up-to-date knowledge on regulatory guidance, and elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.


Subject(s)
Injections , Polylactic Acid-Polyglycolic Acid Copolymer , Chemical Phenomena , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Therapeutic Equivalency
13.
Expert Rev Anti Infect Ther ; 20(9): 1187-1204, 2022 09.
Article in English | MEDLINE | ID: mdl-35615888

ABSTRACT

INTRODUCTION: The ongoing epidemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) creates a massive panic worldwide due to the absence of effective medicines. Developing a new drug or vaccine is time-consuming to pass safety and efficacy testing. Therefore, repurposing drugs have been introduced to treat COVID-19 until effective drugs are developed. AREA COVERED: A detailed search of repurposing drugs against SARS-CoV-2 was carried out using the PubMed database, focusing on articles published 2020 years onward. A different class of drugs has been described in this article to target hosts and viruses. Based on the previous pandemic experience of SARS-CoV and MERS, several antiviral and antimalarial drugs are discussed here. This review covers the failure of some repurposed drugs that showed promising activity in the earlier CoV-pandemic but were found ineffective against SARS-CoV-2. All these discussions demand a successful drug development strategy for screening and identifying an effective drug for better management of COVID-19. EXPERT OPINION: Repurposed drugs have been used since COVID-19 to eradicate disease propagation. Drugs found effective for MERS and SARS may not be effective against SARS-CoV-2. Drug libraries and artificial intelligence are helpful tools to screen and identify different molecules targeting viruses or hosts.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artificial Intelligence , Drug Repositioning , Humans , Pandemics
14.
Materials (Basel) ; 15(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35407706

ABSTRACT

Upconverting luminescent nanoparticles (UCNPs) are "new generation fluorophores" with an evolving landscape of applications in diverse industries, especially life sciences and healthcare. The anti-Stokes emission accompanied by long luminescence lifetimes, multiple absorptions, emission bands, and good photostability, enables background-free and multiplexed detection in deep tissues for enhanced imaging contrast. Their properties such as high color purity, high resistance to photobleaching, less photodamage to biological samples, attractive physical and chemical stability, and low toxicity are affected by the chemical composition; nanoparticle crystal structure, size, shape and the route; reagents; and procedure used in their synthesis. A wide range of hosts and lanthanide ion (Ln3+) types have been used to control the luminescent properties of nanosystems. By modification of these properties, the performance of UCNPs can be designed for anticipated end-use applications such as photodynamic therapy (PDT), high-resolution displays, bioimaging, biosensors, and drug delivery. The application landscape of inorganic nanomaterials in biological environments can be expanded by bridging the gap between nanoparticles and biomolecules via surface modifications and appropriate functionalization. This review highlights the synthesis, surface modification, and biomedical applications of UCNPs, such as bioimaging and drug delivery, and presents the scope and future perspective on Ln-doped UCNPs in biomedical applications.

15.
Microorganisms ; 10(2)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35208758

ABSTRACT

A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure-activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.

16.
Antibiotics (Basel) ; 11(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35052985

ABSTRACT

Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.

17.
Pediatr Res ; 92(4): 951-955, 2022 10.
Article in English | MEDLINE | ID: mdl-35042957

ABSTRACT

The fetal immune system is highly specialized which is to generate both tolerogenic and protective immune responses to tolerate both self- and maternal-antigens. Fetal T cells with pro-inflammatory potential are born in a tolerogenic environment and are tightly controlled by both cell-intrinsic and -extrinsic mechanisms. Fetal B-1 and B-2 B cells involved in innate and adaptive immune responses, respectively, arise in staggered waves of development from distinct progenitors. Innate immune responses are the key to the protection against infection and adaptive immunity creates memory after an initial response to a specific pathogen. This review aims to discuss the recent advances in understanding the development of immune system in fetus. IMPACT: During gestation, essential developmental changes occur to survive the neonates. At early stage, developmental signals and changes may be influenced due to immune deficiencies.


Subject(s)
Adaptive Immunity , Immunity, Innate , Infant, Newborn , Humans , Immune System , Fetus , B-Lymphocytes
18.
Front Nutr ; 8: 733402, 2021.
Article in English | MEDLINE | ID: mdl-34790685

ABSTRACT

Fish meal (FM) has excellent protein and lipid profile. However, FM is losing its acceptability and substituted with plant protein due to FM has high price, high demand, and sustainability issues in global aquaculture production. In this study, experimental diets were prepared by substituting FM with fermented soybean meal (FSM) or normal and untreated soybean meal (SM) to assess the effects on growth, hematology, innate immunity, gut physiology, and digestive enzyme activities in juvenile silver barb, Barbonymus gonionotus. Five diets, that is, 40% FM (FM 40), 20% FM + 20% FSM (FM 20 + FSM 20), 20% FM + 20% SM (FM 20 + SM 20), 40% FSM (FSM 40), and 40% SM (SM 40) were fed to the fish two times daily for 90 days. After 90 days of feeding trial, FM 40, FM 20 + FSM 20, and FM 20 + SM 20 diet groups showed significantly higher weight gain (WG) and specific growth rate (SGR) compared to the FSM 40 and SM 40 diets. Hepatosomatic index (HSI) and viscerosomatic index (VSI) were significantly higher in fish fed with the FSM 40 and SM 40 diets than those of fish fed with the FM 40 diet. Hematocrit, hemoglobin, and erythrocyte count were significantly lower in fish fed with the SM 40 diet compared to fish fed with the FM 40 and FM 20 + FSM 20 diets. Superoxide dismutase and catalase activities in the liver were significantly higher in fish fed with the SM 40 diet compared to fish fed with the FM 40 diet. However, serum thiobarbituric acid reactive substances in fish fed with the experimental diets were unaltered. Fish showed significant reduction of villus height (Vh) in the anterior and posterior intestine of fish fed with the FSM 40 and SM 40 diets, whereas muscular thickness was opposite to the findings of Vh. Digestive enzyme activities in intestine were significantly higher in fish fed with the FM 40 diet compared to those in the SM 40 diet. The results of the present study revealed that the 50% of FM can be replaced by FSM or SM as a source of protein without affecting the growth of juvenile silver barb.

19.
Heliyon ; 7(11): e08285, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765796

ABSTRACT

The objective of the current study was to evaluate the biochemical and immunological responses of tilapia, Oreochromis niloticus due to heavy metals pollution. Histomorphological alterations in the liver and kidney suggested tissue damages due to this polluted water exposure. The brain acetylcholinesterase (AChE) as an indicator of neurotoxicity was significantly (P < 0.01) decreased after 10 days exposure of fish to heavy metal contained river water, while plasma glutamate oxalacetate transaminase and plasma glutamate pyruvate transaminase were significantly increased (P < 0.01). Moreover, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase enzyme activities, as well as reduced glutathione and malondialdehyde levels were significantly increased in heavy metals contained river water treated fish compared to the control. Additionally, glucose level and blood serum Ca2+ concentrations were significantly (P < 0.01) decreased in fish exposed to heavy metal contained river water compared to the control. Hematological indices such as Hemoglobin, RBC, WBC, MCV etc. of polluted river water treated fish were significantly (P < 0.01) different in comparison to that of control fish. The cytokines i.e. IL-1ß, IL-6, and TNF-α level were significantly (P < 0.01) increased in the fish exposed to heavy metals contained river water in comparison to that of control fish. The present findings explored the detrimental effects of heavy metal contained river water on fish at biochemical and immunological levels.

20.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34832983

ABSTRACT

One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70-80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...