Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 2114, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483576

ABSTRACT

Physiological cross-sectional area (PCSA), an important biomechanical variable, is an estimate of a muscle's contractile force potential and is derived from dividing muscle mass by the product of a muscle's average fascicle length and a theoretical constant representing the density of mammalian skeletal muscle. This density constant is usually taken from experimental studies of small samples of several model taxa using tissues collected predominantly from the lower limbs of adult animals. The generalized application of this constant to broader analyses of mammalian myology assumes that muscle density (1) is consistent across anatomical regions and (2) is unaffected by the aging process. To investigate the validity of these assumptions, we studied muscles of rabbits (Oryctolagus cuniculus) in the largest sample heretofore investigated explicitly for these variables, and we did so from numerous anatomical regions and from three different age-cohorts. Differences in muscle density and histology as a consequence of age and anatomical region were evaluated using Tukey's HSD tests. Overall, we observed that older individuals tend to have denser muscles than younger individuals. Our findings also demonstrated significant differences in muscle density between anatomic regions within the older cohorts, though none in the youngest cohort. Approximately 50% of the variation in muscle density can be explained histologically by the average muscle fiber area and the average percent fiber area. That is, muscles with larger average fiber areas and a higher proportion of fiber area tend to be denser. Importantly, using the age and region dependent measurements of muscle density that we provide may increase the accuracy of PCSA estimations. Although we found statistically significant differences related to ontogeny and anatomical region, if density cannot be measured directly, the specific values presented herein should be used to improve accuracy. If a single muscle density constant that has been better validated than the ones presented in the previous literature is preferred, then 1.0558 and 1.0502 g/cm3 would be reasonable constants to use across all adult and juvenile muscles respectively.


Subject(s)
Aging/physiology , Biomechanical Phenomena/physiology , Models, Biological , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/physiology , Age Factors , Animals , Female , Forelimb , Head , Hindlimb , Male , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/anatomy & histology , Rabbits , Torso
3.
Anat Rec (Hoboken) ; 303(2): 295-307, 2020 02.
Article in English | MEDLINE | ID: mdl-31148418

ABSTRACT

Hapalemur sps. and Prolemur simus (bamboo lemurs, collectively) stand out from the relatively homogeneous lemurids because they are bamboo feeders and vertical clingers and leapers. This unique diet presents equally unique challenges, like its verticality, toughness, and toxicity. The bamboo lemurs share the generalized anatomy of the other lemurids, but also display some well-documented skeletal adaptations, perhaps to overcome the problems presented by their specialization. Soft-tissue adaptations, however, remain largely unexplored. Explored here are possible soft-tissue adaptations in Hapalemur griseus. We compare H. griseus with other lemurids, Propithecus, Galago, Tarsier, and a tree shrew. Based on the available anatomical and physiological data, we hypothesize that Hapalemur and Prolemur species will have differences in hindlimb morphology when compared with other lemurids. We predict that H. griseus will have more hindlimb muscle mass and will amplify muscle mass differences with increased type II muscle fibers. Relative hindlimb muscle mass in H. griseus is less than other prosimians sampled, yet relative sural muscle mass is significantly heavier (P < 0.01) in H. griseus. Results show that the soleus muscle of H. griseus has a higher amount of type II (fast) fibers in plantarflexors. These findings indicate although H. griseus shares some generalized lemurid morphology, its diet of bamboo may have pushed this generalized lemurid to an anatomical extreme. We suspect additional bamboo-specific adaptations in their anatomy and physiology will be uncovered with further examination into the anatomy of the bamboo lemurs. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc. Anat Rec, 303:295-307, 2020. © 2019 American Association for Anatomy.


Subject(s)
Adaptation, Physiological/physiology , Lemuridae/anatomy & histology , Locomotion/physiology , Muscle, Skeletal/anatomy & histology , Animals , Diet , Lemuridae/physiology , Muscle, Skeletal/physiology , Sasa
4.
J Vis Exp ; (143)2019 01 07.
Article in English | MEDLINE | ID: mdl-30663682

ABSTRACT

Facial expressions, or facial displays, of social or emotional intent are produced by many mammalian taxa as a means of visually communicating with conspecifics at a close range. These displays are achieved by contraction of the mimetic muscles, which are skeletal muscle attached to the dermis of the face. Reverse dissection, removing the full facial mask from the skull and approaching mimetic muscles in reverse, is an effective but destructive way of revealing the morphology of mimetic muscles but it is destructive. DiceCT is a novel mechanism for visualizing skeletal muscles, including mimetic muscles, and isolating individual muscle fascicles for quantitative measurement. Additionally, DiceCT provides a non-destructive mechanism for visualizing muscles. The combined techniques of reverse dissection and DiceCT can be used to assess the evolutionary morphology of mimetic musculature as well as potential contraction strength and velocity in these muscles. This study further demonstrates that DiceCT can be used to accurately and reliably visualize mimetic muscles as well as reverse dissection and provide a non-destructive method for sampling mimetic muscles.


Subject(s)
Face/surgery , Primates/metabolism , Animals , Dissection , Face/pathology , Humans
5.
Anat Rec (Hoboken) ; 301(3): 528-537, 2018 03.
Article in English | MEDLINE | ID: mdl-29418115

ABSTRACT

Skeletal muscle fibers are often used to evaluate functional differences in locomotion. However, because there are energetic differences among muscle fiber cells, muscle fiber composition could be used to address evolutionary questions about energetics. Skeletal muscle is composed of two main types of fibers: Type I and II. The difference between the two can be reduced to how these muscle cells use oxygen and glucose. Type I fibers convert glucose to ATP using oxygen, while Type II fibers rely primarily on anaerobic metabolic processes. The expensive tissue hypothesis (ETH) proposes that the energetic demands imposed on the body by the brain result in a reduction in other expensive tissues (e.g., gastrointestinal tract). The original ETH dismisses the energetic demands of skeletal muscle, despite skeletal muscle being (1) an expensive tissue when active and (2) in direct competition for glucose with the brain. Based on these observations we hypothesize that larger brained primates will have relatively less muscle mass and a decrease in Type I fibers. As part of a larger study to test this hypothesis, we present data from 10 species of primates. We collected body mass, muscle mass, and biopsied four muscles from each specimen for histological procedures. We collected endocranial volumes from the literature. Using immunohistochemistry, a muscle fiber composition profile was created for each species sampled. Results show that larger brained primates have less muscle and fewer Type I fibers than primates with smaller brains. Results clarify the relationship between muscle mass and brain mass and illustrate how muscle mass could be used to address energetic questions. Anat Rec, 301:528-537, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Primates/anatomy & histology , Primates/physiology , Animals , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL
...