Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Ecol Evol ; 8(6): 3543-3555, 2018 03.
Article in English | MEDLINE | ID: mdl-29607045

ABSTRACT

Exploring a trade-off between quantity and quality of offspring allows differences in the fitness between alternative life histories to be accurately evaluated. We addressed the mechanism that maintains alternative life histories (small oceanic planktivores vs. large neritic benthivores) observed in a loggerhead sea turtle (Caretta caretta) population, which has been suggested to be environmental, based on the lack of genetic structure and a large difference in reproductive output. We examined whether maternal foraging habitat affects offspring quality, by measuring the morphology, emergence success, and righting response of hatchlings following incubation in a common open sand area over the whole nesting season at Yakushima Island, Japan, and by recording early growth and survival of offspring that were reared in a common environment at a Japanese aquarium. Furthermore, we tested whether sea turtles adjust egg size in response to temporal shifts of the incubation environment. There were no significant differences in any hatchling traits between oceanic and neritic foragers (which were classified by stable isotope ratios), except for clutches laid during the warmest period of the nesting season. There were also no significant differences in the growth and survival of offspring originating from the two foragers. The size of eggs from both foragers significantly increased as the season progressed, even though the rookery had heavy rainfall, negating the need to counteract heat-related reduction in hatchling morphology. In comparison, the sizes of adult body and clutches from both foragers did not vary significantly. The results further support our previous suggestions that the size-related foraging dichotomy exhibited by adult sea turtles does not have a genetic basis, but derives from phenotypic plasticity. Adjustment in reproductive investment may be associated with: (1) predation avoidance, (2) founder effect, and/or (3) annual variation in egg size.

2.
Ecology ; 94(11): 2583-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24400510

ABSTRACT

Intrapopulation variation in habitat use is commonly seen among mobile animals, yet the mechanisms maintaining it have rarely been researched among untrackable species. To investigate how alternative life histories are maintained in a population of the loggerhead sea turtle (Caretta caretta), cumulative reproductive output was evaluated and compared between small planktivores inhabiting oceanic areas (with water depths > 200 m) and large benthivores inhabiting neritic areas (depths < 200 m) that sympatrically nested at Yakushima Island, Japan, from 1986 to 2011. In total, 362 nesting females sampled in three different years were classified into the two foraging groups based on stable isotope ratios in egg yolks. There were significant differences between the two foraging groups in most recorded life history parameters (clutch size, clutch frequency, breeding frequency, and remigration intervals), with the exception of emergence success. We did not find evidence of life history trade-offs, nor age-related changes in fecundity. Over the 26-year study period, we calculated a 2.4-fold greater reproductive output for neritic foragers than for oceanic ones, accounting for breeding and clutch frequency. Temporal consistencies in stable isotope ratios and remigration intervals within females suggested that female Japanese loggerheads show fidelity to respective foraging habitats throughout the adult stage. The large difference in productivity between the two groups was unlikely to be offset by the difference in survival during the period from aboveground emergence to first reproduction, suggesting that oceanic foragers have a lower level of fitness than neritic ones. Together with an absence of genetic structure between foraging groups, we infer that alternative life histories in a loggerhead turtle population are maintained by a conditional strategy.


Subject(s)
Turtles/growth & development , Turtles/physiology , Aging , Animal Identification Systems , Animal Migration , Animals , Biological Evolution , Egg Yolk , Feeding Behavior , Female , Japan , Nesting Behavior , Ovum/physiology , Reproduction , Time Factors , Turtles/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...