Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(4): 869-881, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38252454

ABSTRACT

Cardiovascular toxicity causes adverse drug reactions and may lead to drug removal from the pharmaceutical market. Cancer therapies can induce life-threatening cardiovascular side effects such as arrhythmias, muscle cell death, or vascular dysfunction. New technologies have enabled cardiotoxic compounds to be identified earlier in drug development. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) and vascular endothelial cells (ECs) can screen for drug-induced alterations in cardiovascular cell function and survival. However, most existing hiPSC models for cardiovascular drug toxicity utilize two-dimensional, immature cells grown in static culture. Improved in vitro models to mechanistically interrogate cardiotoxicity would utilize more adult-like, mature hiPSC-derived cells in an integrated system whereby toxic drugs and protective agents can flow between hiPSC-ECs that represent systemic vasculature and hiPSC-CMs that represent heart muscle (myocardium). Such models would be useful for testing the multi-lineage cardiotoxicities of chemotherapeutic drugs such as VEGFR2/PDGFR-inhibiting tyrosine kinase inhibitors (VPTKIs). Here, we develop a multi-lineage, fully-integrated, cardiovascular organ-chip that can enhance hiPSC-EC and hiPSC-CM functional and genetic maturity, model endothelial barrier permeability, and demonstrate long-term functional stability. This microfluidic organ-chip harbors hiPSC-CMs and hiPSC-ECs on separate channels that can be subjected to active fluid flow and rhythmic biomechanical stretch. We demonstrate the utility of this cardiovascular organ-chip as a predictive platform for evaluating multi-lineage VPTKI toxicity. This study may lead to the development of new modalities for the evaluation and prevention of cancer therapy-induced cardiotoxicity.


Subject(s)
Induced Pluripotent Stem Cells , Neoplasms , Humans , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Endothelial Cells , Myocytes, Cardiac , Neoplasms/metabolism
2.
Lab Chip ; 22(21): 4246-4255, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36205191

ABSTRACT

Engineered microfluidic organ-chips enable increased cellular diversity and function of human stem cell-derived tissues grown in vitro. These three dimensional (3D) cultures, however, are met with unique challenges in visualization and quantification of cellular proteins. Due to the dense 3D nature of cultured nervous tissue, classical methods of immunocytochemistry are complicated by sub-optimal light and antibody penetrance as well as image acquisition parameters. In addition, complex polydimethylsiloxane scaffolding surrounding the tissue of interest can prohibit high resolution microscopy and spatial analysis. Hyperhydration tissue clearing methods have been developed to mitigate similar challenges of in vivo tissue imaging. Here, we describe an adaptation of this approach to efficiently clear human pluripotent stem cell-derived neural tissues grown on organ-chips. We also describe critical imaging considerations when designing signal intensity-based approaches to complex 3D architectures inherent in organ-chips. To determine morphological and anatomical features of cells grown in organ-chips, we have developed a reliable protocol for chip sectioning and high-resolution microscopic acquisition and analysis.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Microfluidics , Dimethylpolysiloxanes , Imaging, Three-Dimensional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...