Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Breast Cancer Res Treat ; 54(2): 101-7, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10424400

ABSTRACT

Sex Hormone-Binding Globulin (SHBG), the plasma carrier for androgens and estradiol, inhibits the estradiol-induced proliferation of breast cancer cells through its membrane receptor, cAMP, and PKA. In addition, the SHBG membrane receptor is preferentially expressed in estrogen-dependent (ER+/PR+) breast cancers which are also characterized by a lower proliferative rate than tumors negative for the SHBG receptor. A variant SHBG with a point mutation in exon 8, causing an aminoacid substitution (Asp 327-->Asn) and thus, the introduction of an additional N-glycosylation site, has been reported. In this work, the distribution of the SHBG variant was studied in 255 breast cancer patients, 32 benign mammary disease patients, and 120 healthy women. The presence of the SHBG mutation was evaluated with PCR amplification of SHBG exon 8 and Hinf I restriction fragment length polymorphism (RFLP) procedure. This technique allowed us to identify 54 SHBG variants (53 W/v and 1 v/v) in breast cancer patients (21.2%), 5 variants (4 W/v and 1 v/v) in benign mammary disease patients (15.6%), and 14 variants (W/v) in the control group (11.6%). The results of PCR and RFLP were confirmed both by nucleotide sequence of SHBG exon 8 and western blot of the plasma SHBG. No differences in the mean plasma level of the protein were observed in the three populations. The frequency of the SHBG variant was significantly higher in ER+/PR+ tumors and in tumors diagnosed in patients over 50 years of age than in the control group. This observation suggests the existence of a close link between the estrogen-dependence of breast cancer and the additionally glycosylated SHBG, further supporting a critical role of the protein in the neoplasm.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estradiol/pharmacology , Genetic Variation , Sex Hormone-Binding Globulin/genetics , Amino Acid Substitution , Arginine , Asparagine , Base Sequence , Breast/cytology , Cell Division/drug effects , Exons , Female , Fibrocystic Breast Disease/genetics , Fibrocystic Breast Disease/pathology , Glycosylation , Humans , Point Mutation , Polymorphism, Restriction Fragment Length , Reference Values , Sex Hormone-Binding Globulin/chemistry , Sex Hormone-Binding Globulin/metabolism
2.
Burns ; 23(7-8): 565-72, 1997.
Article in English | MEDLINE | ID: mdl-9568325

ABSTRACT

In this study, skin-infiltrating cells were characterized in both the active and remission phases of post-burn hypertrophic scar biopsies. Immunohistochemistry examination of active phase samples showed an abundant presence of Langerhans cells, T cells, macrophages, a low presence of natural killer cells and the lack of B lymphocytes. In active hypertrophic scars T lymphocytes infiltrate deep into the superficial dermis and are also observed in the epidermis: CD3+ cells were present at about 222 +/- 107 per 0.25 mm2. In particular the analysis of lymphocyte subpopulations showed that CD4+ T cells predominate in the dermis as well as in the epidermis of active hypertrophic scars whereas CD8+ cells were less well represented (CD4/CD8 ratio is 2.06). This distribution was also shown in remission phase samples and in normotrophic scar specimens, although the lymphocyte number was significantly lower. Approximately 70 per cent of T lymphocytes present in the tissue involved in active phase hypertrophic scar samples were activated (positive with anti-HLA-DR and IL-2 receptor antibodies) which is significantly higher than remission phase hypertrophic and normotrophic scars, in which positivity was 40 and 38 per cent, respectively. Upon activation, the lesional lymphocytes release several cytokines, locally and transiently, that interact with specific receptors in response to different stimulation. Central to the immune hypothesis of hypertrophic scars is that some of the T-cell lymphokines act on keratinocytes, fibroblasts and other cell types to induce changes characteristic of these scars. The presence and close proximity of activated T lymphocytes and antigen-presenting cells of various phenotypes in both the epidermis and dermis of hypertrophic tissues provides strong circumstantial evidence of a local immune response. However, the manner in which T cells achieve and maintain their activated state in hypertrophic tissues is not yet known, and both antigen-dependent and independent mechanisms may contribute.


Subject(s)
Burns/immunology , Cicatrix, Hypertrophic/immunology , HLA-DR Antigens/analysis , Receptors, Interleukin-2/analysis , T-Lymphocyte Subsets/pathology , Wound Healing/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/analysis , Biomarkers/analysis , Biopsy, Needle , CD4 Lymphocyte Count , CD4-CD8 Ratio , Cicatrix, Hypertrophic/pathology , Culture Techniques , Female , Humans , Macrophages/pathology , Male , Middle Aged , Radioimmunoassay , Reference Values , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...