Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Joint J ; 96-B(3): 385-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24589796

ABSTRACT

Using human cadaver specimens, we investigated the role of supplementary fibular plating in the treatment of distal tibial fractures using an intramedullary nail. Fibular plating is thought to improve stability in these situations, but has been reported to have increased soft-tissue complications and to impair union of the fracture. We proposed that multidirectional locking screws provide adequate stability, making additional fibular plating unnecessary. A distal tibiofibular osteotomy model performed on matched fresh-frozen lower limb specimens was stabilised with reamed nails using conventional biplanar distal locking (CDL) or multidirectional distal locking (MDL) options with and without fibular plating. Rotational stiffness was assessed under a constant axial force of 150 N and a superimposed torque of ± 5 Nm. Total movement, and neutral zone and fracture gap movement were analysed. In the CDL group, fibular plating improved stiffness at the tibial fracture site, albeit to a small degree (p = 0.013). In the MDL group additional fibular plating did not increase the stiffness. The MDL nail without fibular plating was significantly more stable than the CDL nail with an additional fibular plate (p = 0.008). These findings suggest that additional fibular plating does not improve stability if a multidirectional distal locking intramedullary nail is used, and is therefore unnecessary if not needed to aid reduction.


Subject(s)
Bone Nails , Bone Plates , Fibula/injuries , Fibula/surgery , Fracture Fixation, Intramedullary/instrumentation , Tibial Fractures/surgery , Cadaver , Humans , Prosthesis Design , Rotation , Stress, Mechanical , Torque
2.
Eur Spine J ; 18(10): 1478-85, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19504129

ABSTRACT

In advanced stages of degenerative disease of the lumbar spine instrumented spondylodesis is still the golden standard treatment. However, in recent years dynamic stabilisation devices are being implanted to treat the segmental instability due to iatrogenic decompression or segmental degeneration. The purpose of the present study was to investigate the stabilising effect of a classical pedicle screw/rod combination, with a moveable hinge joint connection between the screw and rod allowing one degree of freedom (cosmicMIA). Six human lumbar spines (L2-5) were loaded in a spine tester with pure moments of +/-7.5 Nm in lateral bending, flexion/extension and axial rotation. The range of motion (ROM) and the neutral zone were determined for the following states: (1) intact, (2) monosegmental dynamic instrumentation (L4-5), (3) bisegmental dynamic instrumentation (L3-5), (4) bisegmental decompression (L3-5), (5) bisegmental dynamic instrumentation (L3-5) and (6) bisegmental rigid instrumentation (L3-5). Compared to the intact, with monosegmental instrumentation (2) the ROM of the treated segment was reduced to 47, 40 and 77% in lateral bending, flexion/extension and axial rotation, respectively. Bisegmental dynamic instrumentation (3) further reduced the ROM in L4-5 compared to monosegmental instrumentation to 25% (lateral bending), 28% (flexion/extension) and 57% (axial rotation). Bisegmental surgical decompression (4) caused an increase in ROM in both segments (L3-4 and L4-5) to approximately 125% and approximately 135% and 187-234% in lateral bending, flexion/extension and axial rotation, respectively. Compared to the intact state, bisegmental dynamic instrumentation after surgical decompression reduced the ROM of the two-bridged segments to 29-35% in lateral bending and 33-38% in flexion/extension. In axial rotation, the ROM was in the range of the intact specimen (87-117%). A rigid instrumentation (6) further reduced the ROM of the two-bridged segments to 20-30, 23-27 and 50-68% in lateral bending, flexion/extension and axial rotation, respectively. The results of the present study showed that compared to the intact specimen the investigated hinged dynamic stabilisation device reduced the ROM after bisegmental decompression in lateral bending and flexion/extension. Following bisegmental decompression and the thereby caused large rotational instability the device is capable of restoring the motion in axial rotation back to values in the range of the intact motion segments.


Subject(s)
Bone Screws , Decompression, Surgical/methods , Internal Fixators , Lumbar Vertebrae/surgery , Neurosurgical Procedures/methods , Spondylosis/surgery , Biomechanical Phenomena/physiology , Cadaver , Decompression, Surgical/instrumentation , Humans , In Vitro Techniques , Joint Instability/physiopathology , Joint Instability/surgery , Lumbar Vertebrae/anatomy & histology , Lumbar Vertebrae/physiopathology , Movement/physiology , Neurosurgical Procedures/instrumentation , Range of Motion, Articular/physiology , Recovery of Function/physiology , Rotation , Spondylosis/pathology , Spondylosis/physiopathology , Zygapophyseal Joint/anatomy & histology , Zygapophyseal Joint/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...