Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Cent Sci ; 9(5): 905-914, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37252363

ABSTRACT

Fluoromethyl, difluoromethyl, and trifluoromethyl groups are present in numerous pharmaceuticals and agrochemicals, where they play critical roles in the efficacy and metabolic stability of these molecules. Strategies for late-stage incorporation of fluorine-containing atoms in molecules have become an important area of organic and medicinal chemistry as well as synthetic biology. Herein, we describe the synthesis and use of Te-adenosyl-L-(fluoromethyl)homotellurocysteine (FMeTeSAM), a novel and biologically relevant fluoromethylating agent. FMeTeSAM is structurally and chemically related to the universal cellular methyl donor S-adenosyl-L-methionine (SAM) and supports the robust transfer of fluoromethyl groups to oxygen, nitrogen, sulfur, and some carbon nucleophiles. FMeTeSAM is also used to fluoromethylate precursors to oxaline and daunorubicin, two complex natural products that exhibit antitumor properties.

2.
Biofilm ; 3: 100051, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34195607

ABSTRACT

Marinobacter spp. are opportunitrophs with a broad metabolic range including interactions with metals and electrodes. Marinobacter atlanticus strain CP1 was previously isolated from a cathode biofilm microbial community enriched from a sediment microbial fuel cell. Like other Marinobacter spp., M. atlanticus generates small amounts of electrical current when grown as a biofilm on an electrode, which is enhanced by the addition of redox mediators. However, the molecular mechanism resulting in extracellular electron transfer is unknown. Here, RNA-sequencing was used to determine changes in gene expression in electrode-attached and planktonic cells of M. atlanticus when grown at electrode potentials that enable current production (310 and 510 mV vs. SHE) compared to a potential that enables electron uptake (160 mV). Cells grown at current-producing potentials had increased expression of genes for molybdate transport, regardless of planktonic or attached lifestyle. Electrode-attached cells at current-producing potentials showed increased expression of the major export protein for the type VI secretion system. Growth at 160 mV resulted in an increase in expression of genes related to stress response and DNA repair including both RecBCD and the LexA/RecA regulatory network, as well as genes for copper homeostasis. Changes in expression of proteins with PEP C-terminal extracellular export motifs suggests that M. atlanticus is remodeling the biofilm matrix in response to electrode potential. These results improve our understanding of the physiological adaptations required for M. atlanticus growth on electrodes, and suggest a role for metal acquisition, either as a requirement for metal cofactors of redox proteins or as a possible electron shuttling mechanism.

3.
Bioelectrochemistry ; 137: 107644, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32971484

ABSTRACT

Bacterial extracellular electron transfer (EET) is envisioned for use in applied biotechnologies, necessitating electrochemical characterization of natural and engineered electroactive biofilms under conditions similar to the target application, including small-scale biosensing or biosynthesis platforms, which is often distinct from standard 100 mL-scale stirred-batch bioelectrochemical test platforms used in the laboratory. Here, we adapted an eight chamber, nanoliter volume (500 nL) electrochemical flow cell to grow biofilms of both natural (Biocathode MCL community, Marinobacter atlanticus, and Shewanella oneidensis MR1) or genetically modified (S. oneidensis ΔMtr and S. oneidensis ΔMtr + pLB2) electroactive bacteria on electrodes held at a constant potential. Maximum current density achieved by unmodified strains was similar between the nano- and milliliter-scale reactors. However, S. oneidensis biofilms engineered to activate EET upon exposure to 2,4-diacetylphloroglucinol (DAPG) produced current at wild-type levels in the stirred-batch reactor, but not in the nanoliter flow cell. We hypothesize this was due to differences in mass transport of DAPG, naturally-produced soluble redox mediators, and oxygen between the two reactor types. Results presented here demonstrate, for the first time, nanoliter scale chronoamperometry and cyclic voltammetry of a range of electroactive bacteria in a three-electrode reactor system towards development of miniaturized, and potentially high throughput, bioelectrochemical platforms.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrochemical Techniques/methods , Marinobacter/metabolism , Nanotechnology/instrumentation , Shewanella/metabolism , Base Sequence , Biofilms/growth & development , Bioreactors , Electrodes , Electron Transport , Genes, Bacterial , Limit of Detection , Marinobacter/genetics , Marinobacter/growth & development , Shewanella/genetics , Shewanella/growth & development
4.
ACS Synth Biol ; 8(12): 2746-2755, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31750651

ABSTRACT

Organism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule. In addition to the laboratory strain Escherichia coli, organisms were screened from soil and seawater. Putative PG-producing enzymes were mined from a strain bank of bacteria isolated from aircraft and fuel depots. The best enzyme was introduced into the ocean strain Marinobacter atlanticus CP1 with its genome edited to redirect carbon flux from natural fatty acid ester (FAE) production. PG production was also attempted in Bacillus subtilis and Clostridium acetobutylicum. A genetic circuit was constructed in E. coli that responds to PG accumulation, which was then ported to an in vitro paper-based system that could serve as a platform for future low-cost strain screening or for in-field sensing. Collectively, these efforts show how distributed biotechnology laboratories with domain-specific expertise can be marshalled to quickly provide a solution for a targeted organism engineering project, and highlights data and material sharing protocols needed to accelerate future efforts.


Subject(s)
Metabolic Engineering , Nitrobenzenes/metabolism , Phloroglucinol/metabolism , Escherichia coli/metabolism , Genetic Testing , Phloroglucinol/chemistry
5.
Front Microbiol ; 9: 3176, 2018.
Article in English | MEDLINE | ID: mdl-30622527

ABSTRACT

Here, we report on the development of a genetic system for Marinobacter sp. strain CP1, previously isolated from the Biocathode MCL community and shown to oxidize iron and grow as a cathodic biofilm. Sequence analysis of the small and large subunits of the 16S rRNA gene of CP1, as well as comparison of select conserved proteins, indicate that it is most closely related to Marinobacter adhaerens HP15 and Marinobacter sp. ES.042. In silico DNA-DNA hybridization using the genome-to-genome distance calculator (GGDC) predicts CP1 to be a new species of Marinobacter described here as Marinobacter atlanticus. CP1 is competent for transformation with plasmid DNA using conjugation with Escherichia coli donor strain WM3064 and constitutive expression of green fluorescent protein (GFP) is stable in the absence of antibiotic selection. Targeted double deletion mutagenesis of homologs for the M. aquaeoli fatty acyl-CoA reductase (acrB) and fatty aldehyde reductase (farA) genes resulted in a loss of production of wax esters; however, single deletion mutants for either gene resulted in an increase in total wax esters recovered. Genetic tools presented here for CP1 will enable further exploration of wax ester synthesis for biotechnological applications, as well as furthering our efforts to understand the role of CP1 within the Biocathode MCL community.

6.
Nat Chem ; 9(7): 623-628, 2017 07.
Article in English | MEDLINE | ID: mdl-28644466

ABSTRACT

Strong electron-donation from the axial thiolate ligand of cytochrome P450 has been proposed to increase the reactivity of compound I with respect to C-H bond activation. However, it has proven difficult to test this hypothesis, and a direct link between reactivity and electron donation has yet to be established. To make this connection, we have prepared a selenolate-ligated cytochrome P450 compound I intermediate. This isoelectronic perturbation allows for direct comparisons with the wild-type enzyme. Selenium incorporation was achieved using a cysteine auxotrophic Escherichia coli strain. The intermediate was prepared with meta-chloroperbenzoic acid and characterized by UV-visible, Mössbauer and electron paramagnetic resonance spectroscopies. Measurements revealed increased asymmetry around the ferryl moiety, consistent with increased electron donation from the axial selenolate ligand. In line with this observation, we find that the selenolate-ligated compound I cleaves C-H bonds more rapidly than the wild-type intermediate.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Electrons , Selenocysteine/chemistry , Cytochrome P-450 Enzyme System/metabolism , Ligands , Selenocysteine/metabolism
7.
J Am Chem Soc ; 138(49): 16016-16023, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960340

ABSTRACT

We report on the protonation state of Helicobacter pylori catalase compound II. UV/visible, Mössbauer, and X-ray absorption spectroscopies have been used to examine the intermediate from pH 5 to 14. We have determined that HPC-II exists in an iron(IV) hydroxide state up to pH 11. Above this pH, the iron(IV) hydroxide complex transitions to a new species (pKa = 13.1) with Mössbauer parameters that are indicative of an iron(IV)-oxo intermediate. Recently, we discussed a role for an elevated compound II pKa in diminishing the compound I reduction potential. This has the effect of shifting the thermodynamic landscape toward the two-electron chemistry that is critical for catalase function. In catalase, a diminished potential would increase the selectivity for peroxide disproportionation over off-pathway one-electron chemistry, reducing the buildup of the inactive compound II state and reducing the need for energetically expensive electron donor molecules.


Subject(s)
Catalase/chemistry , Helicobacter pylori/enzymology , Hydroxides/chemistry , Iron Compounds/chemistry , Binding Sites , Catalase/metabolism , Hydrogen-Ion Concentration , Hydroxides/metabolism , Iron Compounds/metabolism , Molecular Structure , Spectrophotometry, Ultraviolet , Spectroscopy, Mossbauer , X-Ray Absorption Spectroscopy
8.
J Am Chem Soc ; 138(40): 13143-13146, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27647293

ABSTRACT

High-valent Fe-OH species are often invoked as key intermediates but have only been observed in Compound II of cytochrome P450s. To further address the properties of non-heme FeIV-OH complexes, we demonstrate the reversible protonation of a synthetic FeIV-oxo species containing a tris-urea tripodal ligand. The same protonated FeIV-oxo species can be prepared via oxidation, suggesting that a putative FeV-oxo species was initially generated. Computational, Mössbauer, XAS, and NRVS studies indicate that protonation of the FeIV-oxo complex most likely occurs on the tripodal ligand, which undergoes a structural change that results in the formation of a new intramolecular H-bond with the oxido ligand that aids in stabilizing the protonated adduct. We suggest that similar protonated high-valent Fe-oxo species may occur in the active sites of proteins. This finding further argues for caution when assigning unverified high-valent Fe-OH species to mechanisms.

9.
Nat Chem ; 7(9): 696-702, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26291940

ABSTRACT

Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate-ligated haem proteins that catalyse the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C-H bonds. To provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I using variable-temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe-S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe-S bond lengths can be understood in terms of variations in the hydrogen-bonding patterns within the 'cys-pocket' (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe-S bond, which enables greater electron donation from the axial thiolate ligand. This observation may in part explain P450's greater propensity for C-H bond activation.


Subject(s)
Archaeal Proteins/metabolism , Chloride Peroxidase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Iron/chemistry , Sulfur/chemistry , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Biocatalysis , Carbon/chemistry , Chloride Peroxidase/chemistry , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Electron Spin Resonance Spectroscopy , Fungi/enzymology , Hydrogen/chemistry , Hydrogen Bonding , Kinetics , Oxidation-Reduction , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Spectroscopy, Mossbauer , Sulfolobus acidocaldarius/metabolism , Temperature
10.
J Am Chem Soc ; 136(25): 9124-31, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24875119

ABSTRACT

To provide insight into the iron(IV)hydroxide pK(a) of histidine ligated heme proteins, we have probed the active site of myoglobin compound II over the pH range of 3.9-9.5, using EXAFS, Mössbauer, and resonance Raman spectroscopies. We find no indication of ferryl protonation over this pH range, allowing us to set an upper limit of 2.7 on the iron(IV)hydroxide pK(a) in myoglobin. Together with the recent determination of an iron(IV)hydroxide pK(a) ∼ 12 in the thiolate-ligated heme enzyme cytochrome P450, this result provides insight into Nature's ability to tune catalytic function through its choice of axial ligand.


Subject(s)
Histidine/chemistry , Hydroxides/chemistry , Iron/chemistry , Myoglobin/chemistry , Catalysis , Catalytic Domain , Hydrogen-Ion Concentration , Ligands , Molecular Structure , Spectroscopy, Mossbauer , Spectrum Analysis, Raman , X-Ray Absorption Spectroscopy
11.
Science ; 342(6160): 825-9, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24233717

ABSTRACT

Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pK(a) (where K(a) is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme's framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pK(a) value for this compound of 11.9. Marcus theory analysis indicates that this elevated pK(a) results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.


Subject(s)
Cysteine/analogs & derivatives , Cytochrome P-450 Enzyme System/chemistry , Hydroxides/chemistry , Carbon/chemistry , Catalysis , Cysteine/chemistry , Enzyme Activation , Hydrogen Bonding , Oxidation-Reduction , Tryptophan/chemistry , Tyrosine/chemistry
12.
J Biol Chem ; 288(24): 17074-81, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23632017

ABSTRACT

Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.


Subject(s)
Archaeal Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Archaeal Proteins/isolation & purification , Biocatalysis , Cytochrome P-450 Enzyme System/isolation & purification , Humans , Hydroxylation , Iron/chemistry , Iron/isolation & purification , Oxidation-Reduction , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...