Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 6(8)2023 08.
Article in English | MEDLINE | ID: mdl-37208194

ABSTRACT

The correct intraflagellar transport (IFT) assembly at the ciliary base and the IFT turnaround at the ciliary tip are key for the IFT to perform its function, but we still have poor understanding about how these processes are regulated. Here, we identify WDR31 as a new ciliary protein, and analysis from zebrafish and Caenorhabditis elegans reveals the role of WDR31 in regulating the cilia morphology. We find that loss of WDR-31 together with RP-2 and ELMD-1 (the sole ortholog ELMOD1-3) results in ciliary accumulations of IFT Complex B components and KIF17 kinesin, with fewer IFT/BBSome particles traveling along cilia in both anterograde and retrograde directions, suggesting that the IFT/BBSome entry into the cilia and exit from the cilia are impacted. Furthermore, anterograde IFT in the middle segment travels at increased speed in wdr-31;rpi-2;elmd-1 Remarkably, a non-ciliary protein leaks into the cilia of wdr-31;rpi-2;elmd-1, possibly because of IFT defects. This work reveals WDR31-RP-2-ELMD-1 as IFT and BBSome trafficking regulators.


Subject(s)
Caenorhabditis elegans Proteins , Cilia , GTPase-Activating Proteins , Zebrafish Proteins , Animals , Biological Transport , Caenorhabditis elegans/metabolism , Cilia/metabolism , GTPase-Activating Proteins/metabolism , Zebrafish , Caenorhabditis elegans Proteins/metabolism , Zebrafish Proteins/metabolism
2.
Eur J Pharmacol ; 630(1-3): 42-52, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20045406

ABSTRACT

Membrane rafts and caveolae are specialized microdomains of the cell membrane that form physical platforms for compartmentalization of signalling molecules. Here, we intended to gain insight into the consequences of caveolar localization in G protein-coupled receptor function. We analysed beta(2)-adrenoceptor signalling in purified CRLDF (caveolin-rich low density fractions) of beta(2)-adrenoceptor-overexpressing HEK-293 cells. beta(2)-adrenoceptor and Gs immunoreactivities and forskolin-stimulated adenylate cyclase activity were all detected in CRLDF obtained by the conventional raft purification method that uses Triton X-100 solubilization. However, Triton X-100 caused a complete loss of the functional coupling between beta(2)-adrenoceptor, Gs and adenylate cyclase. Therefore, we developed an optimized purification method based on n-octyl-beta-d-glucopyranoside solubilization, where the functional properties of beta(2)-adrenoceptor, Gs and adenylate cyclase were preserved in the CRLDF. Using this method, we showed that isoproterenol-stimulated adenylate cyclase activity was similar in CRLDF and bulk membrane preparations of HEK-293 cells that overexpress beta(2)-adrenoceptor or beta(2)-adrenoceptor-Gs fusion. Accordingly, treatment of cells with methyl-beta-cyclodextrin, a caveola-disrupting agent, did not affect beta(2)-adrenoceptor-induced cAMP response. Likewise, these responses were insensitive to caveolin 1 and 2 overexpression. On the other hand, methyl-beta-cyclodextrin treatment did decrease beta(2)-adrenoceptor-induced ERK phosphorylation. However, the latter effect of methyl-beta-cyclodextrin could be attributed to a non-specific effect rather than its ability to disrupt membrane microdomains. We showed that localization in the raft microdomains did not affect the signalling efficiency of beta(2)-adrenoceptor-Gs-adenylate cyclase pathway, and that methyl-beta-cyclodextrin may inhibit signalling by directly affecting the signalling system independently of its caveola-disrupting property.


Subject(s)
Adenylyl Cyclases/metabolism , Detergents/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Glucosides/metabolism , Receptors, Adrenergic, beta-2/metabolism , Caveolae/metabolism , Cell Fractionation , Cell Line , Cell Membrane/metabolism , Colforsin/pharmacology , Humans , Isoproterenol/pharmacology , Kidney/cytology , Membrane Microdomains/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...