Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Free Radic Biol Med ; 208: 833-845, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37776916

ABSTRACT

The incidence rate of colorectal cancer (CRC) has been increasing and poses severe threats to human health worldwide and developing effective treatment strategies remains an urgent task. In this study, Chaetoglobosin A (ChA), an endophytic fungal metabolite from the medicinal herb-derived fungus Chaetomium globosum Km1126, was identified as a potent and selective antitumor agent in human CRC. ChA induced growth inhibition of CRC cells in a concentration-dependent manner but did not impair the viability of normal colon cells. ChA triggered mitochondrial intrinsic and caspase-dependent apoptotic cell death. In addition, apoptosis antibody array analysis revealed that expression of Heme oxygenase-1 (HO-1) was significantly increased by ChA. Inhibition of HO-1 increased the sensitivity of CRC cells to ChA, suggesting HO-1 may play a protective role in ChA-mediated cell death. ChA induced cell apoptosis via the induction of reactive oxygen species (ROS) and ROS scavenger (NAC) prevented ChA-induced cell death, mitochondrial dysfunction, and HO-1 activation. ChA promoted the activation of c-Jun N-terminal kinase (JNK), and co-administration of JNK inhibitor or siRNA markedly reversed ChA-mediated apoptosis. ChA significantly decreased the tumor growth without eliciting any organ toxicity or affecting the body weight of the CRC xenograft mice. This is the first study to demonstrate that ChA exhibits promising anti-cancer properties against human CRC both in vitro and in vivo. ChA is a potential therapeutic agent worthy of further development in clinical trials for cancer treatment.


Subject(s)
Colorectal Neoplasms , Heme Oxygenase-1 , Humans , Mice , Animals , Reactive Oxygen Species/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Apoptosis , Colorectal Neoplasms/metabolism , Mitochondria/metabolism , Cell Line, Tumor
2.
Antioxidants (Basel) ; 10(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34829701

ABSTRACT

Shikonin mitigated tumor cell proliferation by elevating reactive oxygen species (ROS) levels. Herein, we investigated the effects of shikonin on renal cancer cell (RCC) cell proliferation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that shikonin dose-dependently reduced the proliferation of Caki-1 and ACHN cells. Shikonin remarkably triggered necrosis and apoptosis in Caki-1 and ACHN cells in proportion to its concentration. Moreover, necrostatin-1 recovered cell viability in the presence of shikonin. Elevated ROS levels and mitochondrial dysfunction were also found in shikonin treatment groups. Pretreatment with N-acetyl cysteine remarkably mitigated shikonin-induced cell death and ROS generation. Western blot analysis revealed that shikonin reduced pro-PARP, pro-caspase-3, and Bcl-2 expression and increased cleavage PARP expression. Enhanced autophagy was also found in the shikonin-treated group as evidenced by acridine orange staining. Moreover, light chain 3B (LC3B)-II accumulation and enhanced p62 expression indicated that autophagy occurred in the shikonin-treated group. LC3B knockdown considerably recovered cell viability in the presence of shikonin. Shikonin treatment elevated p38 activity in a dose-dependent manner. In conclusion, our results revealed that shikonin triggered programmed cell death via the elevation of ROS level and p38 activity in different types of RCC cells. These findings suggested that shikonin may be a potential anti-RCC agent.

SELECTION OF CITATIONS
SEARCH DETAIL