Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Cent J ; 5: 32, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21682931

ABSTRACT

BACKGROUND: Twenty-seven extracts from 26 plants were identified as photo-cytotoxic in the course of our bioassay guided screening program for photosensitisers from 128 extracts prepared from 64 terrestrial plants in two different collection sites in Malaysia - Royal Belum Forest Reserve in the State of Perak and Gunung Nuang in the State of Selangor. One of the photo-cytotoxic extracts from the leaves of Phaeanthus ophtalmicus was further investigated. RESULTS: The ethanolic extract of the leaves from Phaeanthus ophtalmicus was able to reduce the in vitro viability of leukaemic HL60 cells to < 50% when exposed to 9.6 J/cm2 of a broad spectrum light at a concentration of 20 µg/mL. Dereplication of the photo-cytotoxic fractions from P. ophthalmicus extracts based on TLC Rf values and HPLC co-injection of reference tetrapyrrolic compounds enabled quick identification of known photosensitisers, pheophorbide-a, pheophorbide-a methyl ester, 132-hydroxypheophorbide-a methyl ester, pheophytin-a and 151-hydroxypurpurin 7-lactone dimethyl ester. In addition, compound 1 which was not previously isolated as a natural product was also identified as 7-formyl-151-hydroxypurpurin-7-lactone methyl ester using standard spectroscopic techniques. CONCLUSIONS: Our results suggest that the main photosensitisers in plants are based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in very minor amounts or are not as active as those with the cyclic tetrapyrrole structure.

2.
J Photochem Photobiol B ; 96(3): 216-22, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19647445

ABSTRACT

One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures. Our results suggest that the main photosensitisers from terrestrial plants are likely based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in minor amounts or are not as active as those with the cyclic tetrapyrrole structure.


Subject(s)
Photochemotherapy , Photosensitizing Agents/chemistry , Plant Extracts/chemistry , Cell Line, Tumor , Humans , Light , Magnoliopsida/chemistry , Malaysia , Photosensitizing Agents/isolation & purification , Photosensitizing Agents/toxicity , Pyrroles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...