Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 28(2): 233-42, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18055434

ABSTRACT

Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.


Subject(s)
Crops, Agricultural , Forestry , Plant Roots/growth & development , Trees/growth & development , Phaseolus , Seeds , Soil , Trees/anatomy & histology , Uganda
2.
Oecologia ; 126(2): 158-165, 2001 Jan.
Article in English | MEDLINE | ID: mdl-28547613

ABSTRACT

In previous work, we provided evidence from sap flow measurements that when root systems span soil layers of different moisture content, water is redistributed by roots in the direction of the difference in water potential. In addition to the phenomenon termed "hydraulic lift", where water is redistributed from depth to dry topsoil, the process of "hydraulic redistribution" includes downward transfer of water when the surface layers of soils with low permeability become wet after rainfall. In this paper, we support our previous findings with evidence from measurements of soil water and estimate the quantities of water transferred to depth following rain. Amounts of water stored at depth are not likely to be significant for drought avoidance by plants. However, downward transfer of water may be important to plant establishment and the reduction of waterlogging in certain soil types.

3.
Oecologia ; 115(3): 306-311, 1998 Jul.
Article in English | MEDLINE | ID: mdl-28308420

ABSTRACT

Plant roots transfer water between soil layers of different water potential thereby significantly affecting the distribution and availability of water in the soil profile. We used a modification of the heat pulse method to measure sap flow in roots of Grevillea robusta and Eucalyptus camaldulensis and demonstrated a redistribution of soil water from deeper in the profile to dry surface horizons by the root system. This phenomenon, termed "hydraulic lift" has been reported previously. However, we also demonstrated that after the surface soils were rewetted at the break of season, water was transported by roots from the surface to deeper soil horizons - the reverse of the "hydraulic lift" behaviour described for other woody species. We suggest that "hydraulic redistribution" of water in tree roots is significant in maintaining root viability, facilitating root growth in dry soils and modifying resource availability.

SELECTION OF CITATIONS
SEARCH DETAIL
...