Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 7135, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130913

ABSTRACT

Gene expression profiling has helped tremendously in the understanding of biological processes and diseases. However, interpreting processed data to gain insights into biological mechanisms remain challenging, especially to the non-bioinformaticians, as many of these data visualization and pathway analysis tools require extensive data formatting. To circumvent these challenges, we developed STAGEs (Static and Temporal Analysis of Gene Expression studies) that provides an interactive visualisation of omics analysis outputs. Users can directly upload data created from Excel spreadsheets and use STAGEs to render volcano plots, differentially expressed genes stacked bar charts, pathway enrichment analysis by Enrichr and Gene Set Enrichment Analysis (GSEA) against established pathway databases or customized gene sets, clustergrams and correlation matrices. Moreover, STAGEs takes care of Excel gene to date misconversions, ensuring that every gene is considered for pathway analysis. Output data tables and graphs can be exported, and users can easily customize individual graphs using widgets such as sliders, drop-down menus, text boxes and radio buttons. Collectively, STAGEs is an integrative platform for data analysis, data visualisation and pathway analysis, and is freely available at https://kuanrongchan-stages-stages-vpgh46.streamlitapp.com/ . In addition, developers can customise or modify the web tool locally based on our existing codes, which is publicly available at https://github.com/kuanrongchan/STAGES .


Subject(s)
Data Visualization , Software , Gene Expression Profiling , Gene Expression , Internet
2.
Cell Host Microbe ; 27(6): 879-882.e2, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32359396

ABSTRACT

The inflammatory response to SARS-coronavirus-2 (SARS-CoV-2) infection is thought to underpin COVID-19 pathogenesis. We conducted daily transcriptomic profiling of three COVID-19 cases and found that the early immune response in COVID-19 patients is highly dynamic. Patient throat swabs were tested daily for SARS-CoV-2, with the virus persisting for 3 to 4 weeks in all three patients. Cytokine analyses of whole blood revealed increased cytokine expression in the single most severe case. However, most inflammatory gene expression peaked after respiratory function nadir, except expression in the IL1 pathway. Parallel analyses of CD4 and CD8 expression suggested that the pro-inflammatory response may be intertwined with T cell activation that could exacerbate disease or prolong the infection. Collectively, these findings hint at the possibility that IL1 and related pro-inflammatory pathways may be prognostic and serve as therapeutic targets for COVID-19. This work may also guide future studies to illuminate COVID-19 pathogenesis and develop host-directed therapies.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adult , Aged , Biological Variation, Individual , COVID-19 , Cluster Analysis , Coronavirus Infections/blood , Coronavirus Infections/pathology , Cytokines/blood , Gene Expression Regulation , Humans , Male , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Transcriptome , Up-Regulation
3.
mSphere ; 4(5)2019 09 18.
Article in English | MEDLINE | ID: mdl-31533998

ABSTRACT

Dengue is caused by infection with any one of four dengue viruses (DENV); the risk of severe disease appears to be enhanced by the cross-reactive or subneutralizing levels of antibody from a prior DENV infection. These antibodies opsonize DENV entry through the activating Fc gamma receptors (FcγR), instead of infection through canonical receptor-mediated endocytosis, to result in higher levels of DENV replication. However, whether the enhanced replication is solely due to more efficient FcγR-mediated DENV entry or is also through FcγR-mediated alteration of the host transcriptome response to favor DENV infection remains unclear. Indeed, more efficient viral entry through activation of the FcγR can result in an increased viral antigenic load within target cells and confound direct comparisons of the host transcriptome response under antibody-dependent and antibody-independent conditions. Herein, we show that, despite controlling for the viral antigenic load in primary monocytes, the antibody-dependent and non-antibody-dependent routes of DENV entry induce transcriptome responses that are remarkably different. Notably, antibody-dependent DENV entry upregulated DENV host dependency factors associated with RNA splicing, mitochondrial respiratory chain complexes, and vesicle trafficking. Additionally, supporting findings from other studies, antibody-dependent DENV entry impeded the downregulation of ribosomal genes caused by canonical receptor-mediated endocytosis to increase viral translation. Collectively, our findings support the notion that antibody-dependent DENV entry alters host responses that support the viral life cycle and that host responses to DENV need to be defined in the context of its entry pathway.IMPORTANCE Dengue virus is the most prevalent mosquito-borne viral infection globally, resulting in variable manifestations ranging from asymptomatic viremia to life-threatening shock and multiorgan failure. Previous studies have indicated that the risk of severe dengue in humans can be increased by a specific range of preexisting anti-dengue virus antibody titers, a phenomenon termed antibody-dependent enhancement. There is hence a need to understand how antibodies augment dengue virus infection compared to the alternative canonical receptor-mediated viral entry route. Herein, we show that, besides facilitating viral uptake, antibody-mediated entry increases the expression of early host dependency factors to promote viral infection; these factors include RNA splicing, mitochondrial respiratory chain complexes, vesicle trafficking, and ribosomal genes. These findings will enhance our understanding of how differences in entry pathways can affect host responses and offer opportunities to design therapeutics that can specifically inhibit antibody-dependent enhancement of dengue virus infection.


Subject(s)
Antibodies, Viral/immunology , Dengue Virus/physiology , Host Microbial Interactions , Receptors, IgG/immunology , Virus Internalization , Antibody-Dependent Enhancement , Antigens, Viral/immunology , Cell Line , Cells, Cultured , Dengue/virology , Humans , Monocytes/immunology , Monocytes/virology , Sequence Analysis, RNA , Transcriptome , Virus Replication
4.
Nat Med ; 25(8): 1218-1224, 2019 08.
Article in English | MEDLINE | ID: mdl-31308506

ABSTRACT

Flaviviral infections result in a wide spectrum of clinical outcomes, ranging from asymptomatic infection to severe disease. Although the correlates of severe disease have been explored1-4, the pathophysiology that differentiates symptomatic from asymptomatic infection remains undefined. To understand the molecular underpinnings of symptomatic infection, the blood transcriptomic and metabolomic profiles of individuals were examined before and after inoculation with the live yellow fever viral vaccine (YF17D). It was found that individuals with adaptive endoplasmic reticulum (ER) stress and reduced tricarboxylic acid cycle activity at baseline showed increased susceptibility to symptomatic outcome. YF17D infection in these individuals induced maladaptive ER stress, triggering downstream proinflammatory responses that correlated with symptomatic outcome. The findings of the present study thus suggest that the ER stress response and immunometabolism underpin symptomatic yellow fever and possibly even other flaviviral infections. Modulating either ER stress or metabolism could be exploited for prophylaxis against symptomatic flaviviral infection outcome.


Subject(s)
Endoplasmic Reticulum Stress , Yellow Fever Vaccine/immunology , Yellow Fever/metabolism , Adult , Citric Acid Cycle , Disease Susceptibility , Humans , Middle Aged , Reactive Oxygen Species/metabolism , Vaccines, Attenuated/immunology , Yellow Fever/etiology
5.
EMBO J ; 36(10): 1348-1363, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28320741

ABSTRACT

Dengue virus (DENV) has been found to replicate in lymphoid organs such as the lymph nodes, spleen, and liver in post-mortem analysis. These organs are known to have low oxygen levels (~0.5-4.5% O2) due to the vascular anatomy. However, how physiologically low levels of oxygen affect DENV infection via hypoxia-induced changes in the immune response remains unknown. Here, we show that monocytes adapted to 3% O2 show greater susceptibility to antibody-dependent enhancement of DENV infection. Low oxygen level induces HIF1α-dependent upregulation of fragment crystallizable gamma receptor IIA (FcγRIIA) as well as HIF1α-independent alterations in membrane ether lipid concentrations. The increased FcγRIIA expression operates synergistically with altered membrane composition, possibly through increase membrane fluidity, to increase uptake of DENV immune complexes for enhanced infection. Our findings thus indicate that the increased viral burden associated with secondary DENV infection is antibody-dependent but hypoxia-induced and suggest a role for targeting hypoxia-induced factors for anti-dengue therapy.


Subject(s)
Antibodies, Viral/metabolism , Antibody-Dependent Enhancement , Dengue Virus/growth & development , Dengue/pathology , Hypoxia , Monocytes/virology , Cell Membrane/metabolism , Cells, Cultured , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipid Metabolism , Receptors, IgG/metabolism
6.
PLoS One ; 5(4): e10252, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20419108

ABSTRACT

BACKGROUND: In the human malaria parasites Plasmodium falciparum, histone modifications have been implicated in the transcriptional regulation. The acetylation and methylation status of the histones have been linked with transcriptional regulation of the parasite surface virulence factors as well as other genes with stage specific expression. In P. falciparum as well as other eukaryotes, different histone modifications were found to be compartmentalized to distinct regions in the nuclei. This compartmentalization is believed to be one of the main prerequisites for their function in epigenetic regulation of gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigate intracellular distributions of five previously uncharacterized histone modifications including histone 4 acetylation on lysine residue 5 (H4K5Ac), H4K8Ac, H3K9Ac, H4Ac4 and H3K9Me1 during the asexual developmental stages. With the exception of H3K9Me1, the modified histones were localized to the nuclear periphery. This provides a strong indication that the P. falciparum nuclear periphery is one of the most active regions in epigenetic regulation of gene expression. Interestingly, H3K9Me1 is not associated with the nuclei but instead resides in the parasitophorous vacuole (PV), the double membrane compartments surrounding the parasite cell within the host erythrocyte. In this compartment, H3K9Me1 partially co-localizes with Etramp proteins. The localization of H3K9Me1 in the PV is conserved in the other species including P. yoelii and P. vivax. CONCLUSIONS: Similar to other eukaryotes, the periphery of the P. falciparum nuclei is likely one of the most active areas in epigenetic regulation of gene expression involving multiple histone modifications. On the other hand, H3K9Me1 evolved a new function that is linked with the PV. This functional role appears to be evolutionarily conserved in Plasmodium species.


Subject(s)
Epigenesis, Genetic , Histones/metabolism , Plasmodium falciparum/genetics , Cell Nucleus , Histones/analysis , Lysine/metabolism , Methylation , Plasmodium falciparum/growth & development , Vacuoles
SELECTION OF CITATIONS
SEARCH DETAIL
...