Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eye Vis (Lond) ; 6: 32, 2019.
Article in English | MEDLINE | ID: mdl-31660323

ABSTRACT

With the advent of microinvasive glaucoma surgery (MIGS), the spectrum of modalities available to manage patients with this chronic and heterogeneous condition has broadened. Despite its novelty however, there has been a rapid evolution in the development of a multitude of devices, each targeting a structure along the aqueous drainage pathway. A growing body of evidence has demonstrated IOP and medication burden reduction, and a more favorable safety profile with MIGS procedures in contrast to traditional incisional surgeries. Among the array of MIGS, the Hydrus® Microstent (Ivantis, Inc., Irvine, CA) is a recent FDA approved device, designed to bypass the trabecular meshwork and provide a scaffold for Schlemm's canal. The objective of this article is to review the Hydrus from conception to clinical use, and present data on its efficacy and safety to date. The available literature has shown promise, however inherent to all novel devices, only long-term monitoring will ensure sustained IOP control and an acceptable safety profile. Surgical advancements in glaucoma have revolutionized the field, and continued research and development will establish these approaches in clinical treatment algorithms.

2.
Invest Ophthalmol Vis Sci ; 57(6): 2355-65, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27136462

ABSTRACT

PURPOSE: The current and projected shortage of transplantable human donor corneas has prompted the development of long-term alternatives to human donor tissue for corneal replacement. The biosynthetic stromal substitutes (BSS) characterized herein represent a potentially safe alternative to donor organ transplantation for anterior corneal stromal diseases. The goal of this phase 1 safety study was to characterize the three-dimensional (3D) corneal shape of the first 10 human patients implanted with a BSS and assess its stability over time. METHODS: Ten patients underwent anterior lamellar keratoplasty using a biosynthetic corneal stromal implant for either advanced keratoconus or central corneal scarring. Surgeries were performed at Linköping University Hospital, between October and November 2007. Serial corneal topographies were performed on all eyes up to a 4-year follow-up when possible. Three-dimensional shape average maps were constructed for the 10 BSS corneas and for 10 healthy controls. Average 3D shape corneal elevation maps, difference maps, and statistics maps were generated. RESULTS: The biosynthetic stromal substitutes implants remained stably integrated into the host corneas over the 4-year follow-up period, without signs of wound dehiscence or implant extrusion. The biosynthetic stromal substitutes corneas showed steeper surface curvatures and were more irregular than the healthy controls. CONCLUSIONS: Corneal astigmatism and surface steepness were observed 4 years after BSS implantation, while the implants remained stably integrated in the host corneas. Future studies will indicate if biomaterials technology will allow for the optimization of postoperative surface irregularity after anterior stromal replacement, a new window of opportunity that is not available with traditional corneal transplantation techniques.


Subject(s)
Cornea/pathology , Corneal Stroma/transplantation , Corneal Topography/methods , Corneal Transplantation , Keratoconus/surgery , Adolescent , Adult , Aged , Cornea/surgery , Corneal Stroma/pathology , Female , Follow-Up Studies , Humans , Imaging, Three-Dimensional , Keratoconus/diagnosis , Male , Middle Aged , Postoperative Period , Retrospective Studies , Time Factors , Treatment Outcome , Visual Acuity , Young Adult
3.
Biomaterials ; 35(8): 2420-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24374070

ABSTRACT

We developed cell-free implants, comprising carbodiimide crosslinked recombinant human collagen (RHC), to enable corneal regeneration by endogenous cell recruitment, to address the worldwide shortage of donor corneas. Patients were grafted with RHC implants. Over four years, the regenerated neo-corneas were stably integrated without rejection, without the long immunosuppression regime needed by donor cornea patients. There was no recruitment of inflammatory dendritic cells into the implant area, whereas, even with immunosuppression, donor cornea recipients showed dendritic cell migration into the central cornea and a rejection episode was observed. Regeneration as evidenced by continued nerve and stromal cell repopulation occurred over the four years to approximate the micro-architecture of healthy corneas. Histopathology of a regenerated, clear cornea from a regrafted patient showed normal corneal architecture. Donor human cornea grafted eyes had abnormally tortuous nerves and stromal cell death was found. Implanted patients had a 4-year average corrected visual acuity of 20/54 and gained more than 5 Snellen lines of vision on an eye chart. The visual acuity can be improved with more robust materials for better shape retention. Nevertheless, these RHC implants can achieve stable regeneration and therefore, represent a potentially safe alternative to donor organ transplantation.


Subject(s)
Biocompatible Materials/therapeutic use , Cornea/surgery , Recombinant Proteins/metabolism , Regeneration/physiology , Tissue Scaffolds/chemistry , Adolescent , Adult , Aged , Aged, 80 and over , Collagen/genetics , Collagen/metabolism , Female , Humans , Male , Microscopy, Confocal , Middle Aged , Prostheses and Implants , Recombinant Proteins/genetics , Visual Acuity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...