Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(44): 30552-30563, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27762557

ABSTRACT

Surface charge and wettability, the two prominent physical factors governing protein adsorption and cell adhesion, have been extensively investigated in the literature. However, a comparison between these driving forces in terms of their independent and cooperative effects in affecting adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol that features two-dimensional control over both surface charge and wettability with limited cross-parameter influence. This strategy is implemented by controlling both the polyion charge density in the layer-by-layer (LbL) assembly process and the polyion side-chain chemical structures. The 2D property matrix spans surface isoelectric points ranging from 5 to 9 and water contact angles from 35 to 70°, with other interferential factors (e.g., roughness) eliminated. The interplay between these two surface variables influences protein (bovine serum albumin, lysozyme) adsorption and 3T3 fibroblast cell adhesion. For proteins, we observe the presence of thresholds for surface wettability and electrostatic driving forces necessary to affect adhesion. Beyond these thresholds, the individual effects of electrostatic forces and wettability are observed. For fibroblast, both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity lead to the highest cell adhesion, whereas negative charge and hydrophobicity lead to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serve as a reference in future studies assessing protein adsorption and cell adhesion to surfaces with known charge and wettability within the property range studied here.


Subject(s)
Polyelectrolytes/chemistry , Adsorption , Cell Adhesion , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...