Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Hum Reprod ; 22(4): 272-84, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26740067

ABSTRACT

STUDY HYPOTHESIS: The mouse endometrium harbours stem/progenitor cells that express the stem cell marker mouse telomerase reverse transcriptase (mTert). STUDY FINDING: We used a mouse carrying a transgenic reporter for mTert promoter activity to identify rare endometrial populations of epithelial and endothelial cells that express mTert. WHAT IS KNOWN ALREADY: Stem/progenitor cells are hypothesized to be responsible for the remarkable regenerative capacity of the endometrium, but the lack of convenient endometrial stem/progenitor markers in the mouse has hampered investigations into the identity of these cells. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: A mouse containing a green fluorescent protein (GFP) reporter under the control of the telomerase reverse transcriptase promoter (mTert-GFP) was used to identify potential stem/progenitor cells in the endometrium. mTert promoter activity was determined using fluorescence microscopy and flow cytometry to identify GFP(+) cells. GFP(+) cells were examined for epithelial, stromal, endothelial, leucocyte and proliferation markers and bromodeoxyuridine retention to determine their identity. The endometrium of ovariectomized mice was compared to that of intact cycling mice to establish the role of ovarian hormones in maintaining mTert-expressing cells. MAIN RESULTS AND THE ROLE OF CHANCE: We found that mTert-GFP is expressed by rare luminal and glandular epithelial cells (0.3% of epithelial cells by flow cytometry), rare CD45(-) cells in the stromal compartment (0.028 ± 0.010% of stromal cells by microscopy) and many CD45(+) leucocytes. Ovariectomy resulted in significant decrease of mTert-GFP(+) epithelial cells (P = 0.029 for luminal epithelium; P = 0.034 for glandular epithelium) and a decrease in the percentage of mTert-GFP(+) CD45(+) leucocytes in the stromal compartment (P = 0.015). However, CD45(-) mTert-GFP(+) cells in the stromal compartment were maintained in ovariectomized mice. This population is enriched for cells bearing the endothelial marker CD31 (10.3% of CD90(-) CD45(-) and 97.8% CD90(+) CD45(-) by flow cytometry). CD45(-) mTert-GFP(+) cells also immunostained for the endothelial marker von Willebrand factor. These results suggest that the endometrial epithelium and vasculature are foci of stem/progenitor activity and provide a system to investigate molecular mechanisms involved in endometrial regeneration and repair. LIMITATIONS, REASONS FOR CAUTION: The stem/progenitor activity of endometrial mTert-GFP(+) cells needs to be experimentally verified. WIDER IMPLICATIONS OF THE FINDINGS: The identification and characterization of mTert-expressing progenitor cells in the mouse will facilitate the identification of equivalent populations in the human endometrium that are likely to be involved in endometrial function, fertility and disease. LARGE-SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This study was funded by National Health and Medical Research Council (NHMRC) of Australia grants (1085435, C.E.G., J.A.D.), 1021127 (C.E.G.), NHMRC Senior Research Fellowship (1042298, C.E.G.), the Victorian Infrastructure Support Program, U.S. National Institutes of Health grant R01 DK084056 (D.T.B.) and the Harvard Stem Cell Institute (D.T.B.). The authors have no conflicts of interest to declare.


Subject(s)
Endometrium/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Stem Cells/metabolism , Telomerase/genetics , Animals , Biomarkers/metabolism , Cell Proliferation , Endometrium/cytology , Endothelial Cells/cytology , Epithelial Cells/cytology , Female , Flow Cytometry , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Leukocytes/cytology , Leukocytes/metabolism , Mice , Ovariectomy , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Promoter Regions, Genetic , Stem Cells/cytology , Telomerase/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
2.
PLoS One ; 10(5): e0127531, 2015.
Article in English | MEDLINE | ID: mdl-25992577

ABSTRACT

OBJECTIVE: Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. MATERIALS AND METHODS: Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. RESULTS: There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. CONCLUSION: This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.


Subject(s)
Adapalene/metabolism , Biomarkers/metabolism , Endometrium/cytology , Mesenchymal Stem Cells/cytology , Animals , Cattle , Cell Differentiation , Female , Flow Cytometry , Humans , Mesenchymal Stem Cells/metabolism , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...