Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829379

ABSTRACT

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Tephritidae , Wasps , Animals , Tephritidae/microbiology , Tephritidae/parasitology , Wasps/microbiology , Wasps/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Larva/microbiology , Larva/parasitology , Larva/growth & development , RNA, Ribosomal, 16S/genetics , Fungi/genetics , Fungi/physiology , Host-Parasite Interactions , Microbiota , Dysbiosis/microbiology , Dysbiosis/parasitology
2.
Heliyon ; 9(7): e18175, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519716

ABSTRACT

Rift Valley Fever (RVF) is a mosquito-borne viral disease caused by the Rift Valley Fever Virus. The disease is a zoonosis that largely affects domestic animals, including sheep, goats, and cattle, resulting in severe morbidity and mortality marked by massive storm abortions. To halt human and livestock deaths due to RVF, the development of efficacious vaccines and therapeutics is a compelling and urgent priority. We sought to identify potential key modules (gene clusters), hub genes, and regulatory motifs involved in the pathogenesis of RVF in Bos taurus that are amenable to inhibition. We analyzed 39 Bos taurus RNA-Seq samples using the weighted gene co-expression network analysis (WGCNA) R package and uncovered significantly enriched modules containing genes with potential pivotal roles in RVF progression. Moreover, regulatory motif analysis conducted using the Multiple Expectation Maximization for Motif Elicitation (MEME) suite identified motifs that probably modulate vital biological processes. Gene ontology terms associated with identified motifs were inferred using the GoMo human database. The gene co-expression network constructed in WGCNA using 5000 genes contained seven (7) modules, out of which four were significantly enriched for terms associated with response to viruses, response to interferon-alpha, innate immune response, and viral defense. Additionally, several biological pathways implicated in developmental processes, anatomical structure development, and multicellular organism development were identified. Regulatory motifs analysis identified short, repeated motifs whose function(s) may be amenable to disruption by novel therapeutics. Predicted functions of identified motifs include tissue development, embryonic organ development, and organ morphogenesis. We have identified several hub genes in enriched co-expressed gene modules and regulatory motifs potentially involved in the pathogenesis of RVF in B. taurus that are likely viable targets for disruption by novel therapeutics.

3.
BMC Microbiol ; 23(1): 50, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36859170

ABSTRACT

BACKGROUND: Thermophilic composting is a promising method of sanitizing pathogens in manure and a source of agriculturally important thermostable enzymes and microorganisms from organic wastes. Despite the extensive studies on compost prokaryotes, shifts in microbial profiles under the influence of various green materials and composting days are still not well understood, considering the complexity of the green material sources. Here, the effect of regimens of green composting material on the diversity, abundance, and metabolic capacity of prokaryotic communities in a thermophilic compost environment was examined. METHODS: Total community 16S rRNA was recovered from triplicate compost samples of Lantana-based, Tithonia-based, Grass-based, and mixed (Lantana + Tithonia + Grass)- based at 21, 42, 63, and 84 days of composting. The 16S rRNA was sequenced using the Illumina Miseq platform. Bioinformatics analysis was done using Divisive Amplicon Denoising Algorithm version 2 (DADA2) R version 4.1 and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States version 2 (PICRUSt2) pipelines for community structure and metabolic profiles, respectively. In DADA2, prokaryotic classification was done using the Refseq-ribosomal database project (RDP) and SILVA version 138 databases. RESULTS: Our results showed apparent differences in prokaryotic community structure for total diversity and abundance within the four compost regimens and composting days. The study showed that the most prevalent phyla during composting included Acidobacteriota, Actinobacteriota, Bacteroidota, Chloroflexi, and Proteobacteria. Additionally, there were differences in the overall diversity of metabolic pathways but no significant differences among the various compost treatments on major metabolic pathways like carbohydrate biosynthesis, carbohydrate degradation, and nitrogen biosynthesis. CONCLUSION: Various sources of green material affect the succession of compost nutrients and prokaryotic communities. The similarity of amounts of nutrients, such as total Nitrogen, at the end of the composting process, despite differences in feedstock material, indicates a significant influence of composting days on the stability of nutrients during composting.


Subject(s)
Composting , RNA, Ribosomal, 16S , Phylogeny , Prokaryotic Cells , Carbohydrates
SELECTION OF CITATIONS
SEARCH DETAIL
...