Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026783

ABSTRACT

The single-layer epithelium of the gastrointestinal tract is a dynamically renewing tissue that ensures nutrient absorption, secretory and barrier functions and is involved in immune responses. The basis for this homeostatic renewal is the Wnt signaling pathway. Blocking this pathway can lead to epithelial damage, while its abnormal activation can result in the development of intestinal tumors. In this study, we investigated the dynamics of intestinal epithelial cells and tumorigenesis using a conditional mouse model. Using single-cell and bulk RNA sequencing and histological analysis, we elucidated the cellular responses following the loss of specific cell types. We focused on the fate of cells in the lower parts of the intestinal crypts and the development of colon adenomas. By partially inactivating the transcription factor Tcf4, a key effector of the Wnt signaling pathway, we analyzed the regeneration of isolated hyperproliferative foci (crypts). Our results suggest that the damaged epithelium is not restored by a specific regeneration program associated with oncofetal gene production, but rather by a standard homeostatic renewal pathway. Moreover, disruption of Tcf4 in secretory progenitors resulted in a significant shift in the cell lineage from Paneth cells to goblet cells, characterized by morphological changes and loss of Paneth cell-specific genes. We also found that hyperactivation of the Wnt signaling pathway in colonic adenomas correlated with the upregulation of genes typical of Paneth cells in the intestine, followed by the emergence of secretory tumor cells producing the Wnt3 ligand. The absence of Tcf4 led to a phenotypic shift of the tumor cells towards goblet cells. Our study presents a new model of epithelial regeneration based on the genetically driven partial elimination of intestinal crypts. We highlight the critical role of Tcf4 in the control of cell lineage decisions in the intestinal epithelium and colon tumors.

2.
Cancers (Basel) ; 14(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077674

ABSTRACT

Trophoblastic cell surface antigen 2 (TROP2) is a membrane glycoprotein overexpressed in many solid tumors with a poor prognosis, including intestinal neoplasms. In our study, we show that TROP2 is expressed in preneoplastic lesions, and its expression is maintained in most colorectal cancers (CRC). High TROP2 positivity correlated with lymph node metastases and poor tumor differentiation and was a negative prognostic factor. To investigate the role of TROP2 in intestinal tumors, we analyzed two mouse models with conditional disruption of the adenomatous polyposis coli (Apc) tumor-suppressor gene, human adenocarcinoma samples, patient-derived organoids, and TROP2-deficient tumor cells. We found that Trop2 is produced early after Apc inactivation and its expression is associated with the transcription of genes involved in epithelial-mesenchymal transition, the regulation of migration, invasiveness, and extracellular matrix remodeling. A functionally similar group of genes was also enriched in TROP2-positive cells from human CRC samples. To decipher the driving mechanism of TROP2 expression, we analyzed its promoter. In human cells, this promoter was activated by ß-catenin and additionally by the Yes1-associated transcriptional regulator (YAP). The regulation of TROP2 expression by active YAP was verified by YAP knockdown in CRC cells. Our results suggest a possible link between aberrantly activated Wnt/ß-catenin signaling, YAP, and TROP2 expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...