Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10738, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730226

ABSTRACT

A drug molecule is a substance that changes an organism's mental or physical state. Every approved drug has an indication, which refers to the therapeutic use of that drug for treating a particular medical condition. While the Large Language Model (LLM), a generative Artificial Intelligence (AI) technique, has recently demonstrated effectiveness in translating between molecules and their textual descriptions, there remains a gap in research regarding their application in facilitating the translation between drug molecules and indications (which describes the disease, condition or symptoms for which the drug is used), or vice versa. Addressing this challenge could greatly benefit the drug discovery process. The capability of generating a drug from a given indication would allow for the discovery of drugs targeting specific diseases or targets and ultimately provide patients with better treatments. In this paper, we first propose a new task, the translation between drug molecules and corresponding indications, and then test existing LLMs on this new task. Specifically, we consider nine variations of the T5 LLM and evaluate them on two public datasets obtained from ChEMBL and DrugBank. Our experiments show the early results of using LLMs for this task and provide a perspective on the state-of-the-art. We also emphasize the current limitations and discuss future work that has the potential to improve the performance on this task. The creation of molecules from indications, or vice versa, will allow for more efficient targeting of diseases and significantly reduce the cost of drug discovery, with the potential to revolutionize the field of drug discovery in the era of generative AI.


Subject(s)
Artificial Intelligence , Drug Discovery , Humans , Drug Discovery/methods , Pharmaceutical Preparations/chemistry
2.
J Healthc Inform Res ; 8(2): 313-352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38681755

ABSTRACT

Clinical information retrieval (IR) plays a vital role in modern healthcare by facilitating efficient access and analysis of medical literature for clinicians and researchers. This scoping review aims to offer a comprehensive overview of the current state of clinical IR research and identify gaps and potential opportunities for future studies in this field. The main objective was to assess and analyze the existing literature on clinical IR, focusing on the methods, techniques, and tools employed for effective retrieval and analysis of medical information. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted an extensive search across databases such as Ovid Embase, Ovid Medline, Scopus, ACM Digital Library, IEEE Xplore, and Web of Science, covering publications from January 1, 2010, to January 4, 2023. The rigorous screening process led to the inclusion of 184 papers in our review. Our findings provide a detailed analysis of the clinical IR research landscape, covering aspects like publication trends, data sources, methodologies, evaluation metrics, and applications. The review identifies key research gaps in clinical IR methods such as indexing, ranking, and query expansion, offering insights and opportunities for future studies in clinical IR, thus serving as a guiding framework for upcoming research efforts in this rapidly evolving field. The study also underscores an imperative for innovative research on advanced clinical IR systems capable of fast semantic vector search and adoption of neural IR techniques for effective retrieval of information from unstructured electronic health records (EHRs). Supplementary Information: The online version contains supplementary material available at 10.1007/s41666-024-00159-4.

3.
NPJ Digit Med ; 7(1): 82, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553625

ABSTRACT

Generative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional patient care into a more personalized, efficient, and proactive process. Chatbots, serving as interactive conversational models, will probably drive this patient-centered transformation in healthcare. Through the provision of various services, including diagnosis, personalized lifestyle recommendations, dynamic scheduling of follow-ups, and mental health support, the objective is to substantially augment patient health outcomes, all the while mitigating the workload burden on healthcare providers. The life-critical nature of healthcare applications necessitates establishing a unified and comprehensive set of evaluation metrics for conversational models. Existing evaluation metrics proposed for various generic large language models (LLMs) demonstrate a lack of comprehension regarding medical and health concepts and their significance in promoting patients' well-being. Moreover, these metrics neglect pivotal user-centered aspects, including trust-building, ethics, personalization, empathy, user comprehension, and emotional support. The purpose of this paper is to explore state-of-the-art LLM-based evaluation metrics that are specifically applicable to the assessment of interactive conversational models in healthcare. Subsequently, we present a comprehensive set of evaluation metrics designed to thoroughly assess the performance of healthcare chatbots from an end-user perspective. These metrics encompass an evaluation of language processing abilities, impact on real-world clinical tasks, and effectiveness in user-interactive conversations. Finally, we engage in a discussion concerning the challenges associated with defining and implementing these metrics, with particular emphasis on confounding factors such as the target audience, evaluation methods, and prompt techniques involved in the evaluation process.

4.
NPJ Digit Med ; 6(1): 225, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042910

ABSTRACT

In 2020, the U.S. Department of Defense officially disclosed a set of ethical principles to guide the use of Artificial Intelligence (AI) technologies on future battlefields. Despite stark differences, there are core similarities between the military and medical service. Warriors on battlefields often face life-altering circumstances that require quick decision-making. Medical providers experience similar challenges in a rapidly changing healthcare environment, such as in the emergency department or during surgery treating a life-threatening condition. Generative AI, an emerging technology designed to efficiently generate valuable information, holds great promise. As computing power becomes more accessible and the abundance of health data, such as electronic health records, electrocardiograms, and medical images, increases, it is inevitable that healthcare will be revolutionized by this technology. Recently, generative AI has garnered a lot of attention in the medical research community, leading to debates about its application in the healthcare sector, mainly due to concerns about transparency and related issues. Meanwhile, questions around the potential exacerbation of health disparities due to modeling biases have raised notable ethical concerns regarding the use of this technology in healthcare. However, the ethical principles for generative AI in healthcare have been understudied. As a result, there are no clear solutions to address ethical concerns, and decision-makers often neglect to consider the significance of ethical principles before implementing generative AI in clinical practice. In an attempt to address these issues, we explore ethical principles from the military perspective and propose the "GREAT PLEA" ethical principles, namely Governability, Reliability, Equity, Accountability, Traceability, Privacy, Lawfulness, Empathy, and Eutonomy, for generative AI in healthcare. Furthermore, we introduce a framework for adopting and expanding these ethical principles in a practical way that has been useful in the military and can be applied to healthcare for generative AI, based on contrasting their ethical concerns and risks. Ultimately, we aim to proactively address the ethical dilemmas and challenges posed by the integration of generative AI into healthcare practice.

5.
Int J Med Inform ; 177: 105144, 2023 09.
Article in English | MEDLINE | ID: mdl-37459703

ABSTRACT

Rehabilitation research focuses on determining the components of a treatment intervention, the mechanism of how these components lead to recovery and rehabilitation, and ultimately the optimal intervention strategies to maximize patients' physical, psychologic, and social functioning. Traditional randomized clinical trials that study and establish new interventions face challenges, such as high cost and time commitment. Observational studies that use existing clinical data to observe the effect of an intervention have shown several advantages over RCTs. Electronic Health Records (EHRs) have become an increasingly important resource for conducting observational studies. To support these studies, we developed a clinical research datamart, called ReDWINE (Rehabilitation Datamart With Informatics iNfrastructure for rEsearch), that transforms the rehabilitation-related EHR data collected from the UPMC health care system to the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to facilitate rehabilitation research. The standardized EHR data stored in ReDWINE will further reduce the time and effort required by investigators to pool, harmonize, clean, and analyze data from multiple sources, leading to more robust and comprehensive research findings. ReDWINE also includes deployment of data visualization and data analytics tools to facilitate cohort definition and clinical data analysis. These include among others the Open Health Natural Language Processing (OHNLP) toolkit, a high-throughput NLP pipeline, to provide text analytical capabilities at scale in ReDWINE. Using this comprehensive representation of patient data in ReDWINE for rehabilitation research will facilitate real-world evidence for health interventions and outcomes.


Subject(s)
Medical Informatics , Rehabilitation Research , Humans , Electronic Health Records , Natural Language Processing
6.
AMIA Jt Summits Transl Sci Proc ; 2023: 418-426, 2023.
Article in English | MEDLINE | ID: mdl-37350905

ABSTRACT

Health literacy is the central focus of Healthy People 2030, the fifth iteration of the U.S. national goals and objectives. People with low health literacy usually have trouble understanding health information, following post-visit instructions, and using prescriptions, which results in worse health outcomes and serious health disparities. In this study, we propose to leverage natural language processing techniques to improve health literacy in patient education materials by automatically translating illiterate languages in a given sentence. We scraped patient education materials from four online health information websites: MedlinePlus.gov, Drugs.com, Mayoclinic.org and Reddit.com. We trained and tested the state-of-the-art neural machine translation (NMT) models on a silver standard training dataset and a gold standard testing dataset, respectively. The experimental results showed that the Bidirectional Long Short-Term Memory (BiLSTM) NMT model outperformed Bidirectional Encoder Representations from Transformers (BERT)-based NMT models. We also verified the effectiveness of NMT models in translating health illiterate languages by comparing the ratio of health illiterate language in the sentence. The proposed NMT models were able to identify the correct complicated words and simplify into layman language while at the same time, the models suffer from sentence completeness, fluency, readability, and have difficulty in translating certain medical terms.

7.
Health Data Sci ; 2021: 9759016, 2021.
Article in English | MEDLINE | ID: mdl-38487504

ABSTRACT

Background. There is growing evidence that social and behavioral determinants of health (SBDH) play a substantial effect in a wide range of health outcomes. Electronic health records (EHRs) have been widely employed to conduct observational studies in the age of artificial intelligence (AI). However, there has been limited review into how to make the most of SBDH information from EHRs using AI approaches.Methods. A systematic search was conducted in six databases to find relevant peer-reviewed publications that had recently been published. Relevance was determined by screening and evaluating the articles. Based on selected relevant studies, a methodological analysis of AI algorithms leveraging SBDH information in EHR data was provided.Results. Our synthesis was driven by an analysis of SBDH categories, the relationship between SBDH and healthcare-related statuses, natural language processing (NLP) approaches for extracting SBDH from clinical notes, and predictive models using SBDH for health outcomes.Discussion. The associations between SBDH and health outcomes are complicated and diverse; several pathways may be involved. Using NLP technology to support the extraction of SBDH and other clinical ideas simplifies the identification and extraction of essential concepts from clinical data, efficiently unlocks unstructured data, and aids in the resolution of unstructured data-related issues.Conclusion. Despite known associations between SBDH and diseases, SBDH factors are rarely investigated as interventions to improve patient outcomes. Gaining knowledge about SBDH and how SBDH data can be collected from EHRs using NLP approaches and predictive models improves the chances of influencing health policy change for patient wellness, ultimately promoting health and health equity.

8.
ArXiv ; 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32601600

ABSTRACT

COVID-19 has resulted in an ongoing pandemic and as of 12 June 2020, has caused more than 7.4 million cases and over 418,000 deaths. The highly dynamic and rapidly evolving situation with COVID-19 has made it difficult to access accurate, on-demand information regarding the disease. Online communities, forums, and social media provide potential venues to search for relevant questions and answers, or post questions and seek answers from other members. However, due to the nature of such sites, there are always a limited number of relevant questions and responses to search from, and posted questions are rarely answered immediately. With the advancements in the field of natural language processing, particularly in the domain of language models, it has become possible to design chatbots that can automatically answer consumer questions. However, such models are rarely applied and evaluated in the healthcare domain, to meet the information needs with accurate and up-to-date healthcare data. In this paper, we propose to apply a language model for automatically answering questions related to COVID-19 and qualitatively evaluate the generated responses. We utilized the GPT-2 language model and applied transfer learning to retrain it on the COVID-19 Open Research Dataset (CORD-19) corpus. In order to improve the quality of the generated responses, we applied 4 different approaches, namely tf-idf, BERT, BioBERT, and USE to filter and retain relevant sentences in the responses. In the performance evaluation step, we asked two medical experts to rate the responses. We found that BERT and BioBERT, on average, outperform both tf-idf and USE in relevance-based sentence filtering tasks. Additionally, based on the chatbot, we created a user-friendly interactive web application to be hosted online.

9.
J Am Med Inform Assoc ; 27(8): 1259-1267, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32458963

ABSTRACT

OBJECTIVE: As coronavirus disease 2019 (COVID-19) started its rapid emergence and gradually transformed into an unprecedented pandemic, the need for having a knowledge repository for the disease became crucial. To address this issue, a new COVID-19 machine-readable dataset known as the COVID-19 Open Research Dataset (CORD-19) has been released. Based on this, our objective was to build a computable co-occurrence network embeddings to assist association detection among COVID-19-related biomedical entities. MATERIALS AND METHODS: Leveraging a Linked Data version of CORD-19 (ie, CORD-19-on-FHIR), we first utilized SPARQL to extract co-occurrences among chemicals, diseases, genes, and mutations and build a co-occurrence network. We then trained the representation of the derived co-occurrence network using node2vec with 4 edge embeddings operations (L1, L2, Average, and Hadamard). Six algorithms (decision tree, logistic regression, support vector machine, random forest, naïve Bayes, and multilayer perceptron) were applied to evaluate performance on link prediction. An unsupervised learning strategy was also developed incorporating the t-SNE (t-distributed stochastic neighbor embedding) and DBSCAN (density-based spatial clustering of applications with noise) algorithms for case studies. RESULTS: The random forest classifier showed the best performance on link prediction across different network embeddings. For edge embeddings generated using the Average operation, random forest achieved the optimal average precision of 0.97 along with a F1 score of 0.90. For unsupervised learning, 63 clusters were formed with silhouette score of 0.128. Significant associations were detected for 5 coronavirus infectious diseases in their corresponding subgroups. CONCLUSIONS: In this study, we constructed COVID-19-centered co-occurrence network embeddings. Results indicated that the generated embeddings were able to extract significant associations for COVID-19 and coronavirus infectious diseases.


Subject(s)
Algorithms , Coronavirus Infections , Neural Networks, Computer , Pandemics , Pneumonia, Viral , Bayes Theorem , COVID-19 , Datasets as Topic , Decision Trees , Humans , Logistic Models , ROC Curve , Software , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...