Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 55(9): 1962-72, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26226383

ABSTRACT

INPHARMA (interligand nuclear Overhauser enhancement for pharmacophore mapping) determines the relative orientation of two competitive ligands in the protein binding pocket. It is based on the observation of interligand transferred NOEs mediated by spin diffusion through protons of the protein and is, therefore, sensitive to the specific interactions of each of the two ligands with the protein. We show how this information can be directly included into a protein-ligand docking program to guide the prediction of the complex structures. Agreement between the experimental and back-calculated spectra based on the full relaxation matrix approach is translated into a score contribution that is combined with the scoring function ChemPLP of our docking tool PLANTS. This combined score is then used to predict the poses of five weakly bound cAMP-dependent protein kinase (PKA) ligands. After optimizing the setup, which finally also included trNOE data and optimized protonation states, very good success rates were obtained for all combinations of three ligands. For one additional ligand, no conclusive results could be obtained due to the ambiguous electron density of the ligand in the X-ray structure, which does not disprove alternative ligand poses. The failures of the remaining ligand are caused by suboptimal locations of specific protein side chains. Therefore, side-chain flexibility should be included in an improved INPHARMA-PLANTS version. This will reduce the strong dependence on the used protein input structure leading to improved scores overall, not only for this last ligand.


Subject(s)
Proteins/chemistry , Ligands , Magnetic Resonance Imaging , Models, Molecular , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Kinases/chemistry
2.
J Chem Theory Comput ; 8(11): 4818-27, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-26605634

ABSTRACT

Fragment-based quantum chemical calculations are able to accurately calculate NMR chemical shifts even for very large molecules like proteins. But even with systematic optimization of the level of theory and basis sets as well as the use of implicit solvents models, some nuclei like polar protons and nitrogens suffer from poor predictions. Two properties of the real system, strongly influencing the experimental chemical shifts but almost always neglected in the calculations, will be discussed here in great detail: (1) conformational averaging and (2) interactions with first-shell solvent molecules. Classical molecular dynamics simulations in explicit water were carried out for obtaining a representative ensemble including the arrangement of neighboring solvent molecules, which was then subjected to quantum chemical calculations. We could demonstrate with the small test system N-methyl acetamide (NMA) that the calculated chemical shifts show immense variations of up to 6 ppm and 50 ppm for protons and nitrogens, respectively, depending on the snapshot taken from a classical molecular dynamics simulation. Applying the same approach to the HA2 domain of the influenza virus glycoprotein hemagglutinin, a 32-amino-acid-long polypeptide, and comparing averaged values to the experiment, chemical shifts of nonpolar protons and carbon atoms in proteins were calculated with unprecedented accuracy. Additionally, the mean absolute error could be reduced by a factor of 2.43 for polar protons, and reasonable correlations were obtained for nitrogen and carbonyl carbon in contrast to all other studies published so far.

3.
Proteins ; 79(7): 2189-202, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21557322

ABSTRACT

Despite the many protein structures solved successfully by nuclear magnetic resonance (NMR) spectroscopy, quality control of NMR structures is still by far not as well established and standardized as in crystallography. Therefore, there is still the need for new, independent, and unbiased evaluation tools to identify problematic parts and in the best case also to give guidelines that how to fix them. We present here, quantum chemical calculations of NMR chemical shifts for many proteins based on our fragment-based quantum chemical method: the adjustable density matrix assembler (ADMA). These results show that (13)C chemical shifts of reasonable accuracy can be obtained that can already provide a powerful measure for the structure validation. (1)H and even more (15)N chemical shifts deviate more strongly from experiment due to the insufficient treatment of solvent effects and conformational averaging.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Quantum Theory , Carbon Isotopes/chemistry , Hydrogen/chemistry , Models, Molecular , Peptides/chemistry , Protein Conformation , Reproducibility of Results , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...