Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835307

ABSTRACT

Myelodysplastic Syndromes (MDSs) are bone marrow (BM) failure malignancies characterized by constitutive innate immune activation, including NLRP3 inflammasome driven pyroptotic cell death. We recently reported that the danger-associated molecular pattern (DAMP) oxidized mitochondrial DNA (ox-mtDNA) is diagnostically increased in MDS plasma although the functional consequences remain poorly defined. We hypothesized that ox-mtDNA is released into the cytosol, upon NLRP3 inflammasome pyroptotic lysis, where it propagates and further enhances the inflammatory cell death feed-forward loop onto healthy tissues. This activation can be mediated via ox-mtDNA engagement of Toll-like receptor 9 (TLR9), an endosomal DNA sensing pattern recognition receptor known to prime and activate the inflammasome propagating the IFN-induced inflammatory response in neighboring healthy hematopoietic stem and progenitor cells (HSPCs), which presents a potentially targetable axis for the reduction in inflammasome activation in MDS. We found that extracellular ox-mtDNA activates the TLR9-MyD88-inflammasome pathway, demonstrated by increased lysosome formation, IRF7 translocation, and interferon-stimulated gene (ISG) production. Extracellular ox-mtDNA also induces TLR9 redistribution in MDS HSPCs to the cell surface. The effects on NLRP3 inflammasome activation were validated by blocking TLR9 activation via chemical inhibition and CRISPR knockout, demonstrating that TLR9 was necessary for ox-mtDNA-mediated inflammasome activation. Conversely, lentiviral overexpression of TLR9 sensitized cells to ox-mtDNA. Lastly, inhibiting TLR9 restored hematopoietic colony formation in MDS BM. We conclude that MDS HSPCs are primed for inflammasome activation via ox-mtDNA released by pyroptotic cells. Blocking the TLR9/ox-mtDNA axis may prove to be a novel therapeutic strategy for MDS.


Subject(s)
DNA, Mitochondrial , Inflammasomes , Myelodysplastic Syndromes , Toll-Like Receptor 9 , Humans , DNA, Mitochondrial/metabolism , Inflammasomes/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/physiology , Toll-Like Receptor 9/metabolism
2.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-34987021

ABSTRACT

BACKGROUND: T cell immunoglobulin and mucin domain containing-3 (TIM-3) blocking antibodies are currently being evaluated in clinical trials for solid and hematological malignancies. Despite its identification on T cells, TIM-3 is predominantly expressed by myeloid cells, including XCR1+ type I conventional dendritic cells (cDC1s). We have recently shown that TIM-3 blockade promotes expression of CXCR3 chemokine ligands by tumor cDCs, but how this drives a CD8+ T cell-dependent response to therapy is unclear. METHODS: T cell infiltration, effector function, and spatial localization in relation to XCR1+ cDC1s were evaluated in a murine orthotopic mammary carcinoma model during response to TIM-3 blockade and paclitaxel chemotherapy. Mixed bone marrow chimeras and diphtheria toxin depletion were used to determine the role of specific genes in cDC1s during therapeutic responses. RESULTS: TIM-3 blockade increased interferon-γ expression by CD8+ T cells without altering immune infiltration. cDC1 expression of CXCL9, but not CXCL10, was required for response to TIM-3 blockade. CXCL9 was also necessary for the increased proximity observed between CD8+ T cells and XCR1+ cDC1s during therapy. Tumor responses were dependent on cDC1 expression of interleukin-12, but not MHCI. CONCLUSIONS: TIM-3 blockade increases exposure of intratumoral CD8+ T cells to cDC1-derived cytokines, with implications for the design of therapeutic strategies using antibodies against TIM-3.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Immunotherapy/methods , Interleukin-12/metabolism , Receptors, Chemokine/metabolism , Animals , Humans , Mice , Signal Transduction
3.
Immunity ; 54(6): 1154-1167.e7, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33979578

ABSTRACT

Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1+ classical dendritic cells (cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and Sting. TIM-3 blockade increased uptake of extracellular DNA by cDC1 through an endocytic process that resulted in cytoplasmic localization. DNA uptake and efficacy of TIM-3 blockade required DNA binding by HMGB1, while galectin-9-induced cell surface clustering of TIM-3 was necessary for its suppressive function. Human peripheral blood cDC1s also took up extracellular DNA upon TIM-3 blockade. Thus, TIM-3 regulates endocytosis of extracellular DNA and activation of the cytoplasmic DNA sensing cGAS-STING pathway in cDC1s, with implications for understanding the mechanisms underlying TIM-3 immunotherapy.


Subject(s)
DNA/metabolism , Dendritic Cells/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction/physiology , Animals , Biological Transport/physiology , Cell Line , Cell Line, Tumor , Chemokines/metabolism , Cytoplasm/metabolism , Endocytosis/physiology , Female , HEK293 Cells , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...