Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Zh Obshch Biol ; 77(2): 135-44, 2016.
Article in Russian | MEDLINE | ID: mdl-27266018

ABSTRACT

Phylogenetic analysis of communities is based on the comparison of distances on the phylogenetic tree between species of a community under study and those distances in random samples taken out of local flora. It makes it possible to determine to what extent a community composition is formed by more closely related species (i.e., "clustered") or, on the opposite, it is more even and includes species that are less related with each other. The first case is usually interpreted as a result of strong influence caused by abiotic factors, due to which species with similar ecology, a priori more closely related, would remain: In the second case, biotic factors, such as competition, may come to the fore and lead to forming a community out of distant clades due to divergence of their ecological niches: The aim of this' study Was Ad explore the phylogenetic structure in communities of the northwestern Caucasus at two spatial scales - the scale of area from 4 to 100 m2 and the smaller scale within a community. The list of local flora of the alpine belt has been composed using the database of geobotanic descriptions carried out in Teberda Biosphere Reserve at true altitudes exceeding.1800 m. It includes 585 species of flowering plants belonging to 57 families. Basal groups of flowering plants are.not represented in the list. At the scale of communities of three classes, namely Thlaspietea rotundifolii - commumties formed on screes and pebbles, Calluno-Ulicetea - alpine meadow, and Mulgedio-Aconitetea subalpine meadows, have not demonstrated significant distinction of phylogenetic structure. At intra level, for alpine meadows the larger share of closely related species. (clustered community) is detected. Significantly clustered happen to be those communities developing on rocks (class Asplenietea trichomanis) and alpine (class Juncetea trifidi). At the same time, alpine lichen proved to have even phylogenetic structure at the small scale. Alpine (class Salicetea herbaceae) that develop under conditions of winter snow accumulation were more,even at the both.scale, i.e., contained more diverse and distantly related plant species compared with random samples. (Scheuchzerio-Caricetea fuscae) aquatic communities in cold (Montio-Cardaminetea), sedge meadows (Carici rupestris-Kobresietea bellardii), and communities, in which shrubs and predominated (juniper and rhododendron elfin woods, class Loiseleurio-Vaccinietea), have been studied only at the larger scale and showed significant evenness of species composition, i.e., were phylogenetically more diverse compared with random samples.


Subject(s)
Altitude , Conservation of Natural Resources/methods , Phylogeny , Plants/classification , Biodiversity , Russia
2.
Zh Obshch Biol ; 77(2): 106-21, 2016.
Article in Russian | MEDLINE | ID: mdl-27266016

ABSTRACT

For the plant species, which is considered a short-lived perennial, we have composed a scale of ontogenetic stages and the life cycle graph (LCG) according to annual observations on permanent sample plots in an Alpine lichen heath during the 2009-2014 period. The LCG that reflects seed reproduction has been reduced to the one that avoids the stage of soil seed bank, yet preserves the arcs of annual recruitment. The corresponding matrix model of stage-structured population dynamics has four stages: juvenile plants (including seedlings), virginal, generative, and 'terminally generative' (the plants die after seed production). Model calibration reduces to directly calculating the rates of transition between stages and those of delays within stages from the data of only one time step, while keeping the two reproduction rates uncertain, yet confined to the quantitative bounds of observed recruitment. This has enabled us to determine a feasible range for the dominant eigenvalue of the model matrix, i.e., the quantitative bounds for the measure of how the local population adapts to its environment, at each of the five time steps, resulting in aformally nonautonomous model. To obtain 'age-specific parameters' from a stage-classified model, we have applied the technique that constructs a virtual absorbing Markov chain and calculates its fundamental matrix. In a nonautonomous model, the estimates of life expectancy also depend on the time of observation (that fixes certain environmental conditions), and vary from two to nearly seven years. The estimates reveal how specifically short lives the short-lived perennial, while their range motivates the task to average the model matrices over the whole period of observation. The model indicates that Eritrichium caucasicum plants spend the most part of their life span in the virginal stage under each of the environment conditions observed, thus revealing the place retention strategy by C. K6rner (2003), or the delayed-development strategy by L.A. Zhukova (1995). We discuss the prospects of model experiments with a logically nonautonomous model to forecast the long-term dynamics of E. caucasicum under a scenario of climate changes.


Subject(s)
Altitude , Boraginaceae/growth & development , Life Cycle Stages , Models, Theoretical , Population Dynamics , Russia
3.
Zh Obshch Biol ; 76(6): 461-74, 2015.
Article in Russian | MEDLINE | ID: mdl-26852571

ABSTRACT

Reciprocal transplantations of sod pieces have been conducted in alpine plant communities of the northwestern Caucasus. During 25 years, the changes in floristic richness and successional rates have been registered. Study objects were chosen to be. plant communities located along the toposequence from ridges to hollows with gradient of snow. cover thickness increase and vegetation period decrease, namely alpine lichen heath (ALH), Festuca varia grasslands (FVG), Geranium-Hedysarum meadows (GHM), and snow bed communities (SBC). The results of the study confirm the hypothesis about floristic richness of transplanted pieces to come closer to that of a background acceptor community. It is shown that during succession the variability reduces if sod pieces from different communities are transplanted into a common one. In particular, this is evident in case of SBC, where floristic richness of sod pieces transplanted from ALH and GHM has reduced noticeably. Also, it is evident from the results that the more different are donor and acceptor communities the higher is the rate of their changing. However, the assumption of higher succession rate in more productive communities has not been affirmed. On the opposite, communities with initially low productivity turned out to change faster than those with high productivity. It is found out that sod pieces transplanted to upper areas of the toposequence have had higher rate of alteration in comparison with those transplanted to lower areas. The reason behind this, as it may be suggested, is a longer growth season, which means a more prolonged period of high functional activity, and, accordingly, more time for the effects of competition, bringing seeds over, etc. In whole, the rate of succession decreases as the time from the moment of transplantation.increases, especially in communities with low productivity.


Subject(s)
Adaptation, Physiological , Introduced Species , Plant Physiological Phenomena , Ecosystem , Fabaceae/physiology , Seasons
4.
Zh Obshch Biol ; 75(4): 315-23, 2014.
Article in Russian | MEDLINE | ID: mdl-25786312

ABSTRACT

Sod transplantation experiment was carried out for 24 years in alpine communities, Teberda Reserve, the North-West Caucasus, Russia. Age of maturity (AOM) was estimated as a period between first registra- tion of a species on.a permanent plot and flowering shoot appearance. Mean species AOM varied from 2.3 years (Antennaria dioica with clonal propagation) to 13.7 years for Taraxacum stevenii (non-clonal plant). General gradient of alpine plant traits and population strategies was determined. It represents a continuum ranging from ruderal--stress-tolerants (shorter AOM, clonality, shorter leaf life span, low rate of mycorrhizal infection, low regrowth ability, low generative shoot number, low specific leaf area and leaf nitrogen content) to competitor--stress-tolerants (longer AOM, longer leaf life span, higher rate of mycorrhizal infection, higher regrowth ability, high generative shoot number, high specific leaf area and leaf nitrogen content).


Subject(s)
Adaptation, Physiological , Flowers/physiology , Plant Roots/physiology , Plant Weeds/physiology , Quantitative Trait, Heritable , Russia
5.
Zh Obshch Biol ; 74(3): 190-200, 2013.
Article in Russian | MEDLINE | ID: mdl-24163983

ABSTRACT

Nitrogen and carbon contents of fine roots were studied for 92 alpine plant species in the Northwest Caucasus. Nitrogen content ranged from 0.43% (Bromus variegatus) to 3.75% (Corydalis conorhiza) with mean value 1.3%. Carbon content ranged from 40.3% (Corydalis conorhiza) to 51.7% (Empetrum nigrum) with mean value 43.4%. C:N ratio was found to be 34:1 which is higher than the worldwide mean. Eudicot's roots had higher N concentration (1.37 +/- 0.07) than monocot's ones (0.95 +/- 0.09). Among the life forms, carbon content increased in the following order: geophytes < hemicriptophytes < chamaephytes. Specific root length positively correlated with nitrogen root content and negatively--with carbon root content. Species with larger leaves and higher specific root area had more nitrogen and less carbon in roots in comparison with species with small leaves. There were positive correlations between leaf and root nitrogen, as well as carbon, contents. Regrowth rate; seed size, aboveground biomass, and vegetation mobility were not related with root nitrogen content. Our results corroborate the poor and rich soil adaptation syndromes. Species of competitive and ruderal (sensu Grime) strategies are more typical for alpine meadows and snow bed communities. They had higher nitrogen contents in leaves and roots, larger leaves with higher water content and higher rate of seed production. On the other hand, stress-tolerant plants had higher carbon and less nitrogen concentrations in their roots and leaves, smaller leaves and specific leaf area.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Plant Leaves/chemistry , Plant Roots/chemistry , Plants/chemistry , Seeds/chemistry , Adaptation, Physiological , Altitude , Biomass , Ecosystem , Plant Leaves/anatomy & histology , Plant Roots/anatomy & histology , Plants/anatomy & histology , Seeds/anatomy & histology , Soil/analysis , Water/metabolism
6.
Zh Obshch Biol ; 73(6): 453-8, 2012.
Article in Russian | MEDLINE | ID: mdl-23330400

ABSTRACT

The experiment with seeds buried in soil has been carried out for 63 alpine plant species from the Northwest Caucasus. Seeds were mixed with native soils and placed in soil at the depth of 8-10 cm for five years. After excavation, seeds of 45 species did not germinate at all. Viability of eight species, four Carex species among them, exceeded 10%. These species are typical of Geranium-Hedysarum meadows and alpine snowbeds and form the main part of soil seed banks in these communities.


Subject(s)
Carex Plant/physiology , Fabaceae/physiology , Germination/physiology , Poaceae/physiology , Seeds/physiology , Altitude , Climate , Ecosystem , Preservation, Biological , Russia , Soil , Time Factors
7.
Zh Obshch Biol ; 72(5): 388-400, 2011.
Article in Russian | MEDLINE | ID: mdl-22121576

ABSTRACT

Plants growing on rich soil usually have thin leaves with large specific leaf area. On the other hand, at intraspecific level; soil fertilization results in leaves size increasing which, in turn, can lead to reduction in specific leaf area. To what extent soil fertilization implies only leaves increasing in size and does not affect other eco-morphological characteristics is a question that is still open. To assess coherence between plants intraspecific reactions to changes in soil richness and general tendencies in changes of leaves parameters in communities with different productivity, an experiment has been conducted in alpine plant communities of the north-western Caucasus. Changes in leaf traits are studied in four types of alpine plant communities after long term application of mineral nutrients (NP and lime treatment). It is shown that in all species, except legume Hedysarum caucasicum, fertilization results in size leaf characteristics (leaf area, wet and dry mass) increase. Specific leaf area appears to decrease in plants inhabiting alpine heathlands and increase in plants inhabiting alpine snow beds and in dominant species of Geranium-Hedysarum meadows, Geranium gymnocaulon. After correction of specific leaf area that accounts for changes in leaf size, it becomes discernable that in most species the increase in leaf area per se results in specific leaf area reduction while changes in leaf structure under influence of fertilization leads to this trait increasing. Those species demonstrating the increase in specific leaf area as an effect of fertilization, also gain more in terms of biomass.


Subject(s)
Ecology/statistics & numerical data , Plant Leaves/anatomy & histology , Plants/anatomy & histology , Soil/chemistry , Altitude , Biomass , Climate , Ecology/methods , Ecosystem , Fertilizers , Photosynthesis/physiology , Plant Development , Plant Leaves/growth & development , Siberia , Snow
9.
Zh Obshch Biol ; 69(3): 195-206, 2008.
Article in Russian | MEDLINE | ID: mdl-18677963

ABSTRACT

Under consideration are plant species stability in respect to their occurrence in the foreign communities, and a role of abiotic factors in development of alpine comminities. The experiment was started in 1989 on Malaya Khatipara Mt (NW Caucasus) at the altitude of 2750 m. a. s.l. included reciprocal transplantation of tussock sites between four alpine communities. Significant changes in the tussock composition were observed due to better or worse acclimation of particular species, due to lost of some species, and because of invasion of aboriginal species from the surroundings into the transplanted sites. The most species involved appeared to be stable in respect to transplantations and some of them even better developed under new ecological conditions, the latter case indicating lack of coincidence of the aut- and sinecological optima.


Subject(s)
Adaptation, Biological , Ecosystem , Environment , Plant Development , Species Specificity
10.
Zh Obshch Biol ; 67(6): 452-63, 2006.
Article in Russian | MEDLINE | ID: mdl-17205792

ABSTRACT

The type of snow cover considerably influences the sctructure of vegetation and production-related processes in alpine communities of diverse regions. The relation of snow cover thickness to the structure of apline plant communities in the eastern Tsinghai-Tibet Plateau (Sichuan, People's Republic of China) was studied by analyzing the vegetation in 251 sample areas grouped in five transects along the gradient of mesotopographic conditions and wintertime snow cover thickness. Considerable differentiation of plant communities related to snow cover thickness in revealed along the line from the northern to the southern slope. It is shown that the influence of snow cover on the distribution of particular plant species is significantly greater than the influence of soil properties (pH, content of humus, total phosphorus, potassium, and ammonia nitrogen in the upper strata of soil). Among the 56 herbaceous plant species and 7 shrub species studied, 52 herbaceous and all the 7 shrub species showed significant (P < 0.05) correlation (positive or negative) to snow cover thickness. Snow cover thickness appeared also significantly correlated to a number of soil properties: soil thickness, content of water, total phosphorus, and humus. But, in contrast to the alpine communities of the Caucasus and the Alps, no considerable acidification of the soil under snowflakes, due to perpetual removal of cations by melt water, was observed.


Subject(s)
Plants/classification , Snow , Adaptation, Physiological , Plant Development , Plant Physiological Phenomena , Seasons , Species Specificity , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...