Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Membranes (Basel) ; 13(7)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37505047

ABSTRACT

Despite the undisputable role of the protein corona in the biointeractions of liposome drug carriers, the field suffers from a lack of knowledge regarding the patterns of protein deposition on lipid surfaces with different compositions. Here, we investigated the protein coronas formed on liposomes of basic compositions containing combinations of egg phosphatidylcholine (PC), palmitoyloleoyl phosphatidylglycerol (POPG), and cholesterol. Liposome-protein complexes isolated by size-exclusion chromatography were delipidated and analyzed using label-free LC-MS/MS. The addition of the anionic lipid and cholesterol both affected the relative protein abundances (and not the total bound proteins) in the coronas. Highly anionic liposomes, namely those containing 40% POPG, carried corona enriched with cationic proteins (apolipoprotein C1, beta-2-glycoprotein 1, and cathelicidins) and were the least stable in the calcein release assay. Cholesterol improved the liposome stability in the plasma. However, the differences in the corona compositions had little effect on the liposome uptake by endothelial (EA.hy926) and phagocytic cells in the culture (U937) or ex vivo (blood-derived monocytes and neutrophils). The findings emphasize that the effect of protein corona on the performance of the liposomes as drug carriers occurs through compromising particle stability rather than interfering with cellular uptake.

2.
Pharmaceutics ; 15(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37376203

ABSTRACT

Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome-cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells.

3.
Membranes (Basel) ; 12(11)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36363586

ABSTRACT

Liposomes as drug carriers are usually injected into the systemic circulation where they are instantly exposed to plasma proteins. Liposome-protein interactions can affect both the stability of liposomes and the conformation of the associated protein leading to the altered biodistribution of the carrier. In this work, mutual effects of albumin and liposomal membrane in the course of the protein's adsorption were examined in terms of quantity of bound protein, its structure, liposome membrane permeability, and changes in physicochemical characteristics of the liposomes. Fluorescence spectroscopy methods and Fourier transform infrared spectroscopy (ATR-FTIR), which provides information about specific groups in lipids involved in interaction with the protein, were used to monitor adsorption of albumin with liposomes based on egg phosphatidylcholine with various additives of negatively charged lipidic components, such as phosphatidylinositol, ganglioside GM1, or the acidic lipopeptide. Less than a dozen of the protein molecules were tightly bound to a liposome independently of bilayer composition, yet they had a detectable impact on the bilayer. Albumin conformational changes during adsorption were partially related to bilayer microhydrophobicity. Ganglioside GM1 showed preferable features for evading undesirable structural changes.

4.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162957

ABSTRACT

To assess the stability and efficiency of liposomes carrying a phospholipase A2-sensitive phospholipid-allocolchicinoid conjugate (aC-PC) in the bilayer, egg phosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylglycerol-based formulations were tested in plasma protein binding, tubulin polymerization inhibition, and cytotoxicity assays. Liposomes L-aC-PC10 containing 10 mol. % aC-PC in the bilayer bound less plasma proteins and were more stable in 50% plasma within 4 h incubation, according to calcein release and FRET-based assays. Liposomes with 25 mol. % of the prodrug (L-aC-PC25) were characterized by higher storage stability judged by their hydrodynamic radius evolution yet enhanced deposition of blood plasma opsonins on their surface according to SDS-PAGE and immunoblotting. Notably, inhibition of tubulin polymerization was found to require that the prodrug should be hydrolyzed to the parent allocolchicinoid. The L-aC-PC10 and L-aC-PC25 formulations demonstrated similar tubulin polymerization inhibition and cytotoxic activities. The L-aC-PC10 formulation should be beneficial for applications requiring liposome accumulation at tumor or inflammation sites.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Colchicine/analogs & derivatives , Liposomes/chemistry , Phospholipases A2/metabolism , Phospholipids/chemistry , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Stability , Fluorescence Resonance Energy Transfer , Humans , Polymerization/drug effects , Prodrugs , Tubulin/metabolism
5.
Acta Biomater ; 134: 57-78, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34364016

ABSTRACT

Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.


Subject(s)
Nanoparticles , Protein Corona , Blood Proteins , Drug Delivery Systems , Humans , Liposomes , Nanomedicine
6.
Pharmaceutics ; 13(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915726

ABSTRACT

Previously, a liposomal formulation of a chemotherapeutic agent melphalan (Mlph) incorporated in a fluid lipid bilayer of natural phospholipids in the form of dioleoylglyceride ester (MlphDG) was developed and the antitumor effect was confirmed in mouse models. The formulation composed of egg phosphatidylcholine (ePC), soybean phosphatidylinositol (PI), and MlphDG (8:1:1, by mol) showed stability in human serum for at least 4-5 h. On the contrary, replacing PI with pegylation of the liposomes, promoted fast dissociation of the components from the bilayer. In this work, interactions of MlphDG-liposomes with the most abundant plasma protein-albumin-in function of the presence of PI in the formulation were explored using Fourier transform infrared spectroscopy. The release of MlphDG from the liposomes was studied by asymmetrical flow field-flow fractionation (AF4) using micelles formed by a polyethylene glycol conjugate with phosphatidylethanolamine to mimic the physiological lipid sink like lipoproteins. Our results show that PI actually protects the membrane of MlphDG-liposomes from the protein penetration, presumably due to pairing between the positively charged MlphDG and negatively charged PI, which compensates for the heterogeneity of the lipid bilayer. The AF4 technique also evidences high stability of the formulation as a drug carrier.

7.
Soft Matter ; 16(13): 3216-3223, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32161934

ABSTRACT

Archaeal lipids ensure unprecedented stability of archaea membranes in extreme environments. Here, we incorporate a characteristic structural feature of an archaeal lipid, the cyclopentane ring, into hydrocarbon chains of a short-chain (C12) phosphatidylcholine to explore whether the insertion would allow such a lipid (1,2-di-(3-(3-hexylcyclopentyl)-propanoate)-sn-glycero-3-phosphatidylcholine, diC12cp-PC) to form stable bilayers at room temperature. According to fluorescence-based assays, in water diC12cp-PC formed liquid-crystalline bilayers at room temperature. Liposomes produced from diC12cp-PC retained calcein for over a week when stored at +4 °C. diC12cp-PC could also form model bilayer lipid membranes that were by an order of magnitude more stable to electrical breakdown than egg PC membranes. Molecular dynamics simulation showed that the cyclopentane fragment fixes five carbon atoms (or four C-C bonds), which is compensated by the higher mobility of the rest of the chain. This was found to be the reason for the remarkable stability of the diC12cp-PC bilayer: restricted conformational mobility of a chain segment increases the membrane bending modulus (compared to a normal hydrocarbon chain of the same length). Here, higher stiffness practically does not affect the line tension of a membrane pore edge. Rather it makes it more difficult for diC12cp-PC to rearrange in order to line the edge of a hydrophilic pore; therefore, fewer pores are formed.


Subject(s)
Archaea/chemistry , Cyclopentanes/chemistry , Hydrophobic and Hydrophilic Interactions/drug effects , Phospholipids/chemistry , Electricity/adverse effects , Lipid Bilayers/radiation effects , Liposomes/chemistry , Liposomes/radiation effects , Molecular Conformation/radiation effects , Water/chemistry
8.
Curr Drug Deliv ; 17(4): 312-323, 2020.
Article in English | MEDLINE | ID: mdl-32056524

ABSTRACT

BACKGROUND: Recently we developed a scalable scheme of synthesis of melphalan ester conjugate with 1,2-dioleoyl-sn-glycerol (MlphDG) and a protocol for the fabrication of its lyophilized liposomal formulation. OBJECTIVE: Herein we compared this new convenient in use formulation of MlphDG with parent drug Alkeran® in rats concerning several toxicological parameters and evaluated its antitumor efficacy in the model of breast cancer in mice. METHOD: Liposomes of approximately 100 nm in diameter, consisting of egg phosphatidylcholine, soybean phosphatidylinositol, and MlphDG, or placebo liposomes without the drug were produced by extrusion and lyophilized. Alkeran® or liposomes recovered by the addition of water were injected into the tail vein of animals. Clinical examination of rats consisted of detailed inspection of the behavior, general status, and hematological parameters. Mice with transplanted breast cancer WNT-1 were subjected to multiple treatments with the drugs; tumor growth inhibition was assessed, together with cellular immunity parameters. RESULTS: Liposomes showed approximately two times lower acute toxicity and better tolerability than Alkeran® in terms of behavioral criteria. The toxic effects of liposomes on hemopoiesis were manifested at higher doses than in the case of Alkeran®, proportionally to the difference in LD50 values. The formulation inhibited tumor growth significantly more effectively than Alkeran®, delaying the start of the exponential growth phase and exhibiting no additional toxic effects toward bone marrow. CONCLUSION: Lower toxicity of the liposomal formulation of MlphDG promises improved quality of life for cancer patients in need of treatment with melphalan. Presumably, the list of indications for melphalan therapy could be extended.


Subject(s)
Antineoplastic Agents/pharmacology , Behavior, Animal/drug effects , Breast Neoplasms/drug therapy , Diglycerides/pharmacology , Melphalan/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Diglycerides/chemical synthesis , Diglycerides/chemistry , Dose-Response Relationship, Drug , Drug Compounding , Drug Screening Assays, Antitumor , Female , Liposomes/chemical synthesis , Liposomes/chemistry , Liposomes/pharmacology , Male , Melphalan/administration & dosage , Melphalan/chemistry , Mice , Mice, Inbred C57BL , Molecular Structure , Prodrugs/administration & dosage , Prodrugs/chemistry , Rats , Structure-Activity Relationship
9.
Bioconjug Chem ; 30(4): 1098-1113, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30817133

ABSTRACT

Enzyme-responsive liposomes release their cargo in response to pathologically increased levels of enzymes at the target site. We report herein an assembly of phospholipase A2-responsive liposomes based on colchicinoid lipid prodrugs incorporated into lipid bilayer of the nanosized vesicles. The liposomes were constructed to addresses two important issues: (i) the lipid prodrugs were designed to fit the structure of the enzyme binding site; and (ii) the concept of lateral pressure profile was used to design lipid prodrugs that introduce almost no distortions into the lipid bilayer packing, thus ensuring that corresponding liposomes are stable. The colchicinoid agents exhibit antiproliferative activity in subnanomolar range of concentrations.


Subject(s)
Colchicine/chemistry , Liposomes , Phospholipids/chemistry , Prodrugs/chemistry , Biophysical Phenomena , Cell Proliferation/drug effects , Colchicine/pharmacology , Fluoresceins/chemistry , Humans , Lipid Bilayers , Phospholipases A2/metabolism
10.
Colloids Surf B Biointerfaces ; 166: 45-53, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29533843

ABSTRACT

Previously, we proposed a liposomal formulation of melphalan (Mlph)-a chemotherapeutic alkylating agent-incorporated in a fluid lipid bilayer in the form of dioleoylglyceride ester. In this work, we compared the stabilizing effect of different amphiphiles included in the Mlph-liposomes, such as phosphatidylinositol (PI), ganglioside GM1, a conjugate of N-carboxymethyl-modified oligoglycine with dioleoylphosphatidylethanolamine (acidic lipopeptide), and polyethylene glycol (2000 Da) conjugated with dipalmitoylphosphatidylethanolamine (PEG-lipid), upon incubation in human serum. Mean hydrodynamic diameter values (86-90 nm) were similar among different liposome samples, while zeta potential values considerably varied. The formulations were incubated in human serum at 37 °C for different time intervals up to 24 h. Liposome integrity was evaluated by changes in fluorescence upon leakage of calcein or disruption of Förster resonance energy transfer between donor and acceptor fluorescent lipid probes in the bilayer. The best stabilization of liposomes was achieved upon the addition of ganglioside GM1 or the acidic lipopeptide. Inclusion of 10 mol% PI improved liposome stability only for the first 4 h of incubation. Pegylated liposomal formulations of melphalan lipophilic prodrug with fluid phase bilayer were the least stable, which is probably due to the propensity of the PEG-lipid to exit liposome membranes. Cholesterol-containing bilayers of liquid ordered phase, supplemented with sufficient amounts of the PEG-lipid, showed good stability in serum.


Subject(s)
Antineoplastic Agents/chemistry , Gangliosides/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Melphalan/chemistry , Prodrugs/chemistry , Humans
11.
Int J Nanomedicine ; 12: 3735-3749, 2017.
Article in English | MEDLINE | ID: mdl-28553111

ABSTRACT

In a previous study, a formulation of methotrexate (MTX) incorporated in the lipid bilayer of 100-nm liposomes in the form of diglyceride ester (MTX-DG, lipophilic prodrug) was developed. In this study, first, the interactions of MTX-DG liposomes with various human and mouse tumor cell lines were studied using fluorescence techniques. The liposomes composed of egg phosphatidylcholine (PC)/yeast phosphatidylinositol/MTX-DG, 8:1:1 by mol, were labeled with fluorescent analogs of PC and MTX-DG. Carcinoma cells accumulated 5 times more MTX-DG liposomes than the empty liposomes. Studies on inhibitors of liposome uptake and processing by cells demonstrated that the formulation used multiple mechanisms to deliver the prodrug inside the cell. According to the data from the present study, undamaged liposomes fuse with the cell membrane only 1.5-2 hours after binding to the cell surface, and then, the components of liposomal bilayer enter the cell separately. The study on the time course of plasma concentration in mice showed that the area under the curve of MTX generated upon intravenous injection of MTX-DG liposomes exceeded that of intact MTX 2.5-fold. These data suggested the advantage of using liposomal formulation to treat systemic manifestation of hematological malignancies. Indeed, the administration of MTX-DG liposomes to recipient mice bearing T-cell leukemic lymphoma using a dose-sparing regimen resulted in lower toxicity and retarded lymphoma growth rate as compared with MTX.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Liposomes/administration & dosage , Lymphoma, T-Cell/drug therapy , Methotrexate/administration & dosage , Prodrugs/administration & dosage , Animals , Antimetabolites, Antineoplastic/chemistry , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/drug effects , Drug Delivery Systems , Female , Humans , Injections, Intravenous , Leukemia/drug therapy , Leukemia/pathology , Lipid Bilayers/chemistry , Liposomes/chemistry , Liposomes/metabolism , Lymphoma, T-Cell/pathology , Methotrexate/chemistry , Mice, Inbred C57BL , Mice, Inbred CBA , Prodrugs/chemistry
12.
Front Behav Neurosci ; 8: 315, 2014.
Article in English | MEDLINE | ID: mdl-25309367

ABSTRACT

Developmental exposure to low dose of methylmercury (MeHg) has a long-lasting effect on memory and attention deficits in humans, as well as cognitive performance, depression-like behavior and the hippocampal levels of the brain-derived neurotrophic factor (Bdnf)in mice. The Bdnf receptor TrkB is a key player of Bdnf signaling. Using transgenic animals, here we analyzed the effect of the full-length TrkB overexpression (TK+) on behavior impairments induced by perinatal MeHg. TK overexpression in the MeHg-exposed mice enhanced generalized anxiety and cue memory in the fear conditioning (FC) test. Early exposure to MeHg induced deficits in reversal spatial memory in the Morris water maze (MWM) test and depression-like behavior in the forced swim test (FST) in only wild-type (WT) mice but did not affect these parameters in TK+ mice. These changes were associated with TK+ effect on the increase in Bdnf 2, 3, 4 and 6 transcription in the hippocampus as well as with interaction of TK+ and MeHg factors for Bdnf 1, 9a and truncated TrkB.T1 transcripts in the prefrontal cortex. However, the MeHg-induced anxiety-like behavior in the elevated plus maze (EPM) and open field (OF) tests was ameliorated by TK+ background only in the OF test. Moreover, TK overexpression in the MeHg mice did not prevent significant stress-induced weight loss during the period of adaptation to individual housing in metabolic cages. These TK genotype-independent changes were primarily accompanied by the MeHg-induced hippocampal deficits in the activity-dependent Bdnf 1, 4 and 9a variants, TrkB.T1, and transcripts for important antioxidant enzymes glyoxalases Glo1 and Glo2 and glutathione reductase Gsr. Our data suggest a role of full-length TrkB in buffering against memory deficits and depression-like behavior in the MeHg mice but propose the involvement of additional pathways, such as the antioxidant system or TrkB.T1 signaling, in stress- or anxiety-related responses induced by developmental MeHg exposure.

13.
PLoS One ; 9(4): e94227, 2014.
Article in English | MEDLINE | ID: mdl-24740186

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively) and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response), and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.


Subject(s)
Alkanesulfonic Acids/toxicity , Dextroamphetamine/pharmacology , Fluorocarbons/toxicity , Zebrafish/physiology , Akathisia, Drug-Induced , Alkanesulfonic Acids/metabolism , Animals , Environmental Exposure , Fluorocarbons/metabolism , Larva/drug effects , Swimming
14.
Toxicol Appl Pharmacol ; 269(1): 51-60, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23500012

ABSTRACT

Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 µM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 µM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca²âº activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS.


Subject(s)
Alkanesulfonic Acids/toxicity , Brain/drug effects , Embryonic Stem Cells/drug effects , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Oligodendroglia/drug effects , PPAR gamma/drug effects , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Brain/metabolism , Brain/pathology , Calcium/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Gene Expression Regulation/drug effects , Ion Channels/metabolism , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurons/metabolism , Oligodendroglia/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Time Factors , Tubulin/metabolism , Uncoupling Protein 2 , Uncoupling Protein 3
15.
Toxicol Sci ; 130(2): 383-90, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22918959

ABSTRACT

Methylmercury (MeHg) is an environmental contaminant with recognized neurotoxic effects, particularly to the developing nervous system. In the present study, we show that nanomolar concentrations of MeHg can induce long-lasting effects in neural stem cells (NSCs). We investigated short-term direct and long-term inherited effects of exposure to MeHg (2.5 or 5.0 nM) using primary cultures of rat embryonic cortical NSCs. We found that MeHg had no adverse effect on cell viability but reduced NSC proliferation and altered the expression of cell cycle regulators (p16 and p21) and senescence-associated markers. In addition, we demonstrated a decrease in global DNA methylation in the exposed cells, indicating that epigenetic changes may be involved in the mechanisms underlying the MeHg-induced effects. These changes were observed in cells directly exposed to MeHg (parent cells) and in their daughter cells cultured under MeHg-free conditions. In agreement with our in vitro data, a trend was found for decreased cell proliferation in the subgranular zone in the hippocampi of adult mice exposed to low doses of MeHg during the perinatal period. Interestingly, this impaired proliferation had a measurable impact on the total number of neurons in the hippocampal dentate gyrus. Importantly, this effect could be reversed by chronic antidepressant treatment. Our study provides novel evidence for programming effects induced by MeHg in NSCs and supports the idea that developmental exposure to low levels of MeHg may result in long-term consequences predisposing to neurodevelopmental disorders and/or neurodegeneration.


Subject(s)
Environmental Pollutants/toxicity , Epigenesis, Genetic/drug effects , Hippocampus/drug effects , Mercury Poisoning, Nervous System/etiology , Methylmercury Compounds/toxicity , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Animals , Antidepressive Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Methylation/drug effects , Dose-Response Relationship, Drug , Environmental Pollutants/metabolism , Fluoxetine/pharmacology , Heredity , Hippocampus/metabolism , Hippocampus/pathology , Male , Mercury Poisoning, Nervous System/genetics , Mercury Poisoning, Nervous System/metabolism , Mercury Poisoning, Nervous System/pathology , Methylmercury Compounds/metabolism , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurogenesis/genetics , Rats , Rats, Sprague-Dawley , Time Factors
16.
Neurotox Res ; 19(3): 452-61, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20512442

ABSTRACT

Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are organic surfactants widely used in various industrial and consumer applications. Due to their chemical properties, these perfluorinated compounds (PFCs) have also become persistent contaminants. The risk of possible intrauterine and lactational exposure to these chemicals poses a significant health concern for potential developmental effects. In the present study we have found that dietary exposure of mice to 0.3 mg/kg of PFOS or PFOA throughout pregnancy results in different distribution pattern in the offspring brain and liver. In particular, exposure to PFOS led to four times higher accumulation of the chemical in the brains of newborn mice than PFOA. We have used a battery of behavioral tests to evaluate motor function, circadian activity, and emotion-related behavior in the exposed offspring. Exposure to PFOS resulted in decreased locomotion in a novel environment and reduced muscle strength only in male offspring. Prenatal exposure to PFOA was associated with changes in exploratory behavior in male and female offspring, as well as with increased global activity in males in their home cage. The neurobehavioral outcome of prenatal exposure to PFCs in mice is characterized by mild alterations in motor function and it appears to be sex-related.


Subject(s)
Alkanesulfonic Acids/toxicity , Caprylates/toxicity , Fluorocarbons/toxicity , Motor Activity/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Sex Characteristics , Animals , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Female , Male , Mice , Mice, Inbred C57BL , Motor Activity/physiology , Pregnancy , Prenatal Exposure Delayed Effects/physiopathology
17.
Met Ions Life Sci ; 7: 403-34, 2010.
Article in English | MEDLINE | ID: mdl-20877814

ABSTRACT

Methylmercury is a global pollutant and potent neurotoxin whose abundance in the food chain mandates additional studies on the consequences and mechanisms of its toxicity to the central nervous system. Formulation of our new hypotheses was predicated on our appreciation for (a) the remarkable affinity of mercurials for the anionic form of sulfhydryl (-SH) groups, and (b) the essential role of thiols in protein biochemistry. The present chapter addresses pathways to human exposure of various mercury compounds, highlighting their neurotoxicity and potential involvement in neurotoxic injury and neurodegenerative changes, both in the developing and senescent brain. Mechanisms that trigger these effects are discussed in detail.


Subject(s)
Alkylmercury Compounds/analysis , Environmental Exposure/analysis , Mercury Compounds/analysis , Nervous System Diseases/metabolism , Alkylmercury Compounds/chemistry , Environmental Exposure/adverse effects , Humans , Mercury Compounds/chemistry , Mercury Poisoning/etiology , Mercury Poisoning/metabolism , Molecular Structure , Nervous System Diseases/etiology
18.
J Neurochem ; 106(3): 1378-87, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18485098

ABSTRACT

Substantial evidence indicates that predisposition to diseases can be acquired during early stages of development and interactions between environmental and genetic factors may be implicated in the onset of many pathological conditions. Data collected over several decades have shown that chemicals are among the relevant factors that can endanger CNS. We previously showed that perinatal exposure to methylmercury (MeHg) causes persistent changes in learning and motivational behavior in mice. In this study, we report that the depression-like behavior in MeHg-exposed male mice is reversed by chronic treatment with the antidepressant fluoxetine. Behavioral alterations are associated with a decrease in brain-derived neurotrophic factor (BDNF) mRNA in the hippocampal dentate gyrus and fluoxetine treatment restores BDNF mRNA expression. We also show that MeHg-exposure induces long-lasting repressive state of the chromatin structure at the BDNF promoter region, in particular DNA hypermethylation, an increase in histone H3-K27 tri-methylation and a decrease in H3 acetylation at the promoter IV. While fluoxetine treatment does not alter hypermethylation of H3-K27, it significantly up-regulates H3 acetylation at the BDNF promoter IV in MeHg-exposed mice. Our study shows that developmental exposure to low levels of MeHg predisposes mice to depression and induces epigenetic suppression of BDNF gene expression in the hippocampus.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Depression/metabolism , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Developmental/drug effects , Methylmercury Compounds/toxicity , Prenatal Exposure Delayed Effects/metabolism , Animals , Brain-Derived Neurotrophic Factor/biosynthesis , Depression/chemically induced , Depression/drug therapy , Epigenesis, Genetic/physiology , Female , Fluoxetine/therapeutic use , Gene Expression Regulation, Developmental/physiology , Immobilization , Male , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects/genetics
19.
Regul Toxicol Pharmacol ; 51(2): 215-29, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18482784

ABSTRACT

Methylmercury (MeHg) is one of the most significant public health hazards. The clinical findings in the victims of the Japanese and Iraqi outbreaks have disclosed the pronounced susceptibility of the developing brain to MeHg poisoning. This notion has triggered worldwide scientific attention toward the long-term consequences of prenatal exposure on child development in communities with chronic low level dietary exposure. MeHg neurodevelopmental effects have been extensively investigated in laboratory animals under well-controlled exposure conditions. This article provides an updated overview of the main neuromorphological and neurobehavioral changes reported in non-human primates and rodents following developmental exposure to MeHg. Different aspects of MeHg's effects on the immature organism are reported, with particular reference to the delayed onset of symptoms and the persistency of central nervous system (CNS) injury/dysfunction. Particular attention is paid to the comparative toxicity assessment across species, and to the degree of concordance/discordance between human and animal data. The contribution of animal studies to define the role of potential effect modifiers and variables on MeHg dose-response relationships is also addressed. The ultimate goal is to discuss the relevance of laboratory animal results, as a complementary tool to human data, with regard to the human risk assessment process.


Subject(s)
Disease Models, Animal , Mercury Poisoning, Nervous System/physiopathology , Methylmercury Compounds/poisoning , Animals , Child , Dose-Response Relationship, Drug , Environmental Exposure/adverse effects , Environmental Pollutants/administration & dosage , Environmental Pollutants/poisoning , Female , Humans , Mercury Poisoning, Nervous System/epidemiology , Methylmercury Compounds/administration & dosage , Pregnancy , Risk Assessment/methods , Species Specificity
20.
Regul Toxicol Pharmacol ; 51(2): 201-14, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18367301

ABSTRACT

Methylmercury (MeHg) is a widespread environmental and food toxicant which has long been known to affect neurodevelopment in both humans and experimental animals. Risk assessment for MeHg is mainly based on human data coming from the massive episodes of poisoning in Japan and Iraq, as well as from large scale epidemiological studies concerning childhood development and neurotoxicity in relation to in utero exposure in various fish eating communities around the world. Despite the extensive literature and research, the threshold dose for MeHg neurotoxic effects is still unclear, in particular when it comes to subtle effects on neurobehaviour. In this article clinical and epidemiological findings concerning the neurodevelopmental toxicity of MeHg are reviewed. Much attention is focussed on the potential impact of factors, such as diet and nutrition, gender, pattern of exposure and co-exposure to other neurotoxic pollutants, which may modulate MeHg toxic effects. These factors, together with the notion that some symptoms may ensue or exacerbate with aging, contribute to the difficulties in the definition of safe levels for developmental exposure.


Subject(s)
Environmental Pollutants/toxicity , Mercury Poisoning, Nervous System/physiopathology , Methylmercury Compounds/poisoning , Animals , Child , Child, Preschool , Environmental Exposure/adverse effects , Female , Fishes , Food Contamination , Humans , Infant , Infant, Newborn , Male , Mercury Poisoning, Nervous System/epidemiology , Pregnancy , Prenatal Exposure Delayed Effects , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...