Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 22(12): e53180, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34605600

ABSTRACT

Repeat element transcription plays a vital role in early embryonic development. The expression of repeats such as MERVL characterises mouse embryos at the 2-cell stage and defines a 2-cell-like cell (2CLC) population in a mouse embryonic stem cell culture. Repeat element sequences contain binding sites for numerous transcription factors. We identify the forkhead domain transcription factor FOXD3 as a regulator of major satellite repeats and MERVL transcription in mouse embryonic stem cells. FOXD3 binds to and recruits the histone methyltransferase SUV39H1 to MERVL and major satellite repeats, consequentially repressing the transcription of these repeats by the establishment of the H3K9me3 heterochromatin modification. Notably, depletion of FOXD3 leads to the de-repression of MERVL and major satellite repeats as well as a subset of genes expressed in the 2-cell state, shifting the balance between the stem cell and 2-cell-like population in culture. Thus, FOXD3 acts as a negative regulator of repeat transcription, ascribing a novel function to this transcription factor.


Subject(s)
Forkhead Transcription Factors , Heterochromatin , Mouse Embryonic Stem Cells , Repressor Proteins , Animals , Binding Sites , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Heterochromatin/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription, Genetic
2.
Nat Commun ; 12(1): 4359, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272378

ABSTRACT

Histone H3 lysine 9 (H3K9) methylation is a central epigenetic modification that defines heterochromatin from unicellular to multicellular organisms. In mammalian cells, H3K9 methylation can be catalyzed by at least six distinct SET domain enzymes: Suv39h1/Suv39h2, Eset1/Eset2 and G9a/Glp. We used mouse embryonic fibroblasts (MEFs) with a conditional mutation for Eset1 and introduced progressive deletions for the other SET domain genes by CRISPR/Cas9 technology. Compound mutant MEFs for all six SET domain lysine methyltransferase (KMT) genes lack all H3K9 methylation states, derepress nearly all families of repeat elements and display genomic instabilities. Strikingly, the 6KO H3K9 KMT MEF cells no longer maintain heterochromatin organization and have lost electron-dense heterochromatin. This is a compelling analysis of H3K9 methylation-deficient mammalian chromatin and reveals a definitive function for H3K9 methylation in protecting heterochromatin organization and genome integrity.


Subject(s)
Fibroblasts/metabolism , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Animals , CRISPR-Cas Systems , Chromatin Immunoprecipitation Sequencing , Chromatography, Liquid , Demethylation , Epigenesis, Genetic , Fibroblasts/enzymology , Gene Deletion , Heterochromatin/enzymology , Heterochromatin/genetics , Heterochromatin/ultrastructure , Histone-Lysine N-Methyltransferase/genetics , In Situ Hybridization, Fluorescence , Mass Spectrometry , Methylation , Mice , Microscopy, Electron, Transmission , Mutation , Protein Processing, Post-Translational/genetics , RNA-Seq , Repetitive Sequences, Nucleic Acid/genetics , Retroelements/genetics , Signal Transduction/genetics
3.
Nucleic Acids Res ; 49(10): 5568-5587, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33999208

ABSTRACT

Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.


Subject(s)
DNA/metabolism , Heterochromatin , RNA/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Methylation , Mice , Mouse Embryonic Stem Cells , Tandem Repeat Sequences
4.
Immunity ; 53(5): 934-951.e9, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33159854

ABSTRACT

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation.


Subject(s)
Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/metabolism , Repetitive Sequences, Nucleic Acid , Signal Transduction , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Animals , Biomarkers , Chromatin Assembly and Disassembly , DNA Transposable Elements , Disease Susceptibility , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Immunity, Innate , Immunohistochemistry , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , RNA Helicases/deficiency , RNA Helicases/genetics , RNA-Binding Proteins/metabolism , TNF Receptor-Associated Factor 6/metabolism , Valproic Acid/pharmacology , Zebrafish
5.
G3 (Bethesda) ; 7(10): 3269-3279, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28818866

ABSTRACT

To ensure genomic integrity, living organisms have evolved diverse molecular processes for sensing and repairing damaged DNA. If improperly repaired, DNA damage can give rise to different types of mutations, an important class of which are genomic structural variants (SVs). In spite of their importance for phenotypic variation and genome evolution, potential contributors to SV formation in Saccharomyces cerevisiae (budding yeast), a highly tractable model organism, are not fully recognized. Here, we developed and applied a genome-wide assay to identify yeast gene knockout mutants associated with de novo deletion formation, in particular single-strand annealing (SSA)-mediated deletion formation, in a systematic manner. In addition to genes previously linked to genome instability, our approach implicates novel genes involved in chromatin remodeling and meiosis in affecting the rate of SSA-mediated deletion formation in the presence or absence of stress conditions induced by DNA-damaging agents. We closely examined two candidate genes, the chromatin remodeling gene IOC4 and the meiosis-related gene MSH4, which when knocked-out resulted in gene expression alterations affecting genes involved in cell division and chromosome organization, as well as DNA repair and recombination, respectively. Our high-throughput approach facilitates the systematic identification of processes linked to the formation of a major class of genetic variation.


Subject(s)
DNA-Binding Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Camptothecin/pharmacology , DNA Damage , DNA Repair , DNA, Fungal/genetics , DNA, Single-Stranded , Doxorubicin/pharmacology , Gene Expression Profiling , Genomic Instability , Hydroxyurea/pharmacology , Methyl Methanesulfonate/pharmacology , Mutagens/pharmacology , Mutation , Nucleic Acid Synthesis Inhibitors/pharmacology , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/pharmacology
6.
Elife ; 62017 08 01.
Article in English | MEDLINE | ID: mdl-28760199

ABSTRACT

The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin.


Subject(s)
DNA/metabolism , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Methyltransferases/metabolism , Nucleic Acid Hybridization , RNA/metabolism , Repetitive Sequences, Nucleic Acid , Repressor Proteins/metabolism , Animals , Mice , Nucleosomes/metabolism
7.
Mol Cell ; 55(2): 277-90, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24981170

ABSTRACT

Heterochromatin is required to restrict aberrant expression of retrotransposons, but it remains poorly defined due to the underlying repeat-rich sequences. We dissected Suv39h-dependent histone H3 lysine 9 trimethylation (H3K9me3) by genome-wide ChIP sequencing in mouse embryonic stem cells (ESCs). Refined bioinformatic analyses of repeat subfamilies indicated selective accumulation of Suv39h-dependent H3K9me3 at interspersed repetitive elements that cover ∼5% of the ESC epigenome. The majority of the ∼8,150 intact long interspersed nuclear elements (LINEs) and endogenous retroviruses (ERVs), but only a minor fraction of the >1.8 million degenerate and truncated LINEs/ERVs, are enriched for Suv39h-dependent H3K9me3. Transcriptional repression of intact LINEs and ERVs is differentially regulated by Suv39h and other chromatin modifiers in ESCs but governed by DNA methylation in committed cells. These data provide a function for Suv39h-dependent H3K9me3 chromatin to specifically repress intact LINE elements in the ESC epigenome.


Subject(s)
Embryonic Stem Cells/enzymology , Endogenous Retroviruses/genetics , Gene Silencing , Histone-Lysine N-Methyltransferase/physiology , Histones/metabolism , Long Interspersed Nucleotide Elements , Methyltransferases/physiology , Repressor Proteins/physiology , Animals , Cells, Cultured , DNA Methylation , Mice , Protein Processing, Post-Translational
8.
Bioessays ; 33(11): 840-50, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21959584

ABSTRACT

Next-generation sequencing (NGS) technologies have revolutionised the analysis of genomic structural variants (SVs), providing significant insights into SV de novo formation based on analyses of rearrangement breakpoint junctions. The short DNA reads generated by NGS, however, have also created novel obstacles by biasing the ascertainment of SVs, an aspect that we refer to as the 'short-read dilemma'. For example, recent studies have found that SVs are often complex, with SV formation generating large numbers of breakpoints in a single event (multi-breakpoint SVs) or structurally polymorphic loci having multiple allelic states (multi-allelic SVs). This complexity may be obscured in short reads, unless the data is analysed and interpreted within its wider genomic context. We discuss how novel approaches will help to overcome the short-read dilemma, and how integration of other sources of information, including the structure of chromatin, may help in the future to deepen the understanding of SV formation processes.


Subject(s)
DNA Breaks, Double-Stranded , Genome, Human , Genomic Structural Variation , Alleles , DNA/genetics , DNA Repair , DNA Replication , Databases, Genetic , Genetic Loci , Genetic Predisposition to Disease/genetics , Genomic Instability , Humans , Mutation Rate , Recombination, Genetic , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...