Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 523, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702481

ABSTRACT

Duchenne muscular dystrophy (DMD) is an intractable X-linked muscular dystrophy caused by mutations in the DMD gene. While many animal models have been used to study the disease, translating findings to humans has been challenging. Microminipigs, with their pronounced physiological similarity to humans and notably compact size amongst pig models, could offer a more representative model for human diseases. Here, we accomplished precise DMD modification in microminipigs by co-injecting embryos with Cas9 protein and a single-guide RNA targeting exon 23 of DMD. The DMD-edited microminipigs exhibited pronounced clinical phenotypes, including perturbed locomotion and body-wide skeletal muscle weakness and atrophy, alongside augmented serum creatine kinase levels. Muscle weakness was observed as of one month of age, respiratory and cardiac dysfunctions emerged by the sixth month, and the maximum lifespan was 29.9 months. Histopathological evaluations confirmed dystrophin deficiency and pronounced dystrophic pathology in the skeletal and myocardial tissues, demonstrating that these animals are an unprecedented model for studying human DMD. The model stands as a distinct and crucial tool in biomedical research, offering deep understanding of disease progression and enhancing therapeutic assessments, with potential to influence forthcoming treatment approaches.


Subject(s)
Disease Models, Animal , Dystrophin , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Swine, Miniature , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Animals , Swine , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Gene Editing , Humans , Male , Phenotype
2.
J Vet Med Sci ; 86(1): 120-127, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38030279

ABSTRACT

An approach to genetically engineered resistance to pseudorabies virus (PRV) infection was examined by using a mouse model with defined point mutation in primary receptor for alphaherpesviruses, nectin-1, by the CRISPR/Cas9 system. It has become clear that phenylalanine at position 129 of nectin-1 is important for binding to viral glycoprotein D (gD), and mutation of phenylalanine 129 to alanine (F129A) prevents nectin-1 binding to gD and virus entry in vitro. Here, to assess the antiviral potential of the single amino acid mutation of nectin-1, F129A, in vivo, we generated genome-edited mutant mouse lines; F129A and 135 knockout (KO). The latter, 135 KO used as a nectin-1 knockout line for comparison, expresses a carboxy-terminal deleted polypeptide consisting of 135 amino acids without phenylalanine 129. In the challenge with 10 LD50 PRV via intranasal route, perfect protection of disease onset was induced by expression of the mutation of nectin-1, F129A (survival rate: 100% in F129A and 135 KO versus 0% in wild type mice). Neither viral DNA/antigens nor pathological changes were detected in F129A, suggesting that viral entry was prevented at the primary site in natural infection. In the challenge with 50 LD50 PRV, lower but still strong protective effect against disease onset was observed (survival rate: 57% in F129A and 75% in 135 KO versus 0% in wild type mice). The present results indicate that single amino acid mutation of nectin-1 F129A provides significant resistance against lethal pseudorabies.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Animals , Mice , Amino Acids/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Mutation , Nectins/genetics , Nectins/metabolism , Phenylalanine/genetics , Phenylalanine/metabolism , Pseudorabies/prevention & control , Viral Envelope Proteins/genetics
3.
J Vet Med Sci ; 84(4): 574-581, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35153249

ABSTRACT

Bordetella bronchiseptica (B. bronchiseptica) is associated with respiratory tract infections in laboratory animals. In our laboratory animal facility, B. bronchiseptica was isolated from 21 of 27 apparently healthy rabbits obtained from a breeding farm contaminated with B. bronchiseptica. Restriction fragment length polymorphism (RFLP) analysis showed that the flagellin genotype of isolates from the laboratory animal facility and breeding farm was type A, which is seen relatively frequently in rabbits in Europe. To examine its pathogenicity, guinea pigs, rats, and mice were inoculated intranasally with a representative strain isolated in the laboratory animal facility. Following inoculation of 107 colony forming unit (cfu), severe inflammation was observed in the lungs of guinea pig and mice, although the inflammation was less severe in rats. The strain was recovered from the trachea and lungs of these species after inoculation with lower dose such as 103 or 104 cfu. These results suggest that the isolated strain causes respiratory tract infection in guinea pigs, rats, and mice, and that its pathogenicity higher in mice than in rats. This study extends our knowledge of interpreting the microbiologic status of laboratory animals, which will contribute to the development of reliable and reproducible animal experiments.


Subject(s)
Bordetella Infections , Bordetella bronchiseptica , Bordetella , Respiratory Tract Infections , Rodent Diseases , Animals , Animals, Laboratory , Bordetella Infections/microbiology , Bordetella Infections/veterinary , Bordetella bronchiseptica/genetics , Guinea Pigs , Inflammation/veterinary , Mice , Rabbits , Rats , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/veterinary , Virulence
4.
Physiol Behav ; 243: 113623, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34653499

ABSTRACT

Identical mouse models tested using the same protocols in different laboratories can produce inconsistent results. Indeed, little information is available regarding suitable diets for mouse models of disease in the field of neuroscience. Thus, neuroscientists often select experimental diets based on personal judgment. Recent studies have reported a strong interaction between depression and gut microbiota. Furthermore, diets can impact the composition of the microbiota. To confirm whether diet influences the phenotype and gut microbiota of depressive mice, we examined the effects of two widely used commercial diets, non-purified (CRF-1) and semi-purified (AIN-93 G) commercial diets on behavior, plasma levels of corticosterone, and cecum microbiota at 1 and 5 weeks after restraint in repeatedly restrained mice. Exposure to repeated stress induced similar depression-like phenotypes 1 week after stress in CRF-1 and AIN-93 G fed mice. However, mice fed the AIN-93 G diet showed greater vulnerability than the others 5 weeks after restraint. The Firmicutes to Bacteroidetes ratio and α-diversity were lower in the cecum at 5 weeks after stress in mice fed the AIN-93 G diet compared to 1 week after stress in mice fed the AIN-93 G diet. These data suggest that diet type affects stress sensitivity via different gut microbiota and that diet selection is important in neuroscience research and data reproducibility.


Subject(s)
Diet , Gastrointestinal Microbiome , Animals , Mice , Mice, Inbred C57BL , Phenotype , Reproducibility of Results
5.
Biochem Biophys Rep ; 28: 101152, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34703907

ABSTRACT

Diet is a key modifiable factor influencing the composition of gut microbiota. There are two types of commercially available diets for experimental animals: non-purified and semi-purified diets. Non-purified diets are composed of complex ingredients from multiple sources, while semi-purified diets are formulated with refined ingredients. Accumulating evidence has demonstrated a link between the gut microbiota and depression, and feed ingredients may influence depressive physiology and behaviors. To test this hypothesis, we examined how chronic non-purified (CRF-1) and semi-purified (AIN-93G) diets affected phenotypes, including depressive behaviors, plasma corticosterone levels, and small-intestine microbiota in young (2 months old) and aged (22 months old) inbred C57BL/JJcl mice. In young mice, similar phenotypes were associated with non-purified and semi-purified diets. However, in aged mice, semi-purified diets increased depressive behaviors in the tail suspension (P < 0.05) and forced swimming tests (P < 0.01). The corticosterone levels were similar between the two diets under normal rearing conditions. However, immediately after exposure to the stressful conditions of the forced swimming test, the corticosterone levels in the aged mice fed the semi-purified diet were higher than those of mice fed the non-purified diet (P < 0.05). There were fewer Lactobacillales in the small intestines of aged mice fed the semi-purified diet compared to those fed the non-purified diet (P < 0.01). Further, α-diversity was lower in aged mice fed the semi-purified versus non-purified diet (P < 0.01). Our results indicate that host physiology and gut microbiota differed according to whether the aged mice were fed a non-purified or semi-purified diet. Specifically, those fed the semi-purified diet were more vulnerable to stress than age-matched mice fed the non-purified diet. Our findings indicate that researchers should consider the effects of feed ingredients on depressive physiology and behaviors, and select diets that are appropriate for their particular research design. Further, identification of the ingredients in non-purified diets could facilitate examination of the mechanisms by which gut microbiota composition might increase resistance to stress and depression.

6.
Neurochem Int ; 142: 104920, 2021 01.
Article in English | MEDLINE | ID: mdl-33238153

ABSTRACT

The immunohistochemical pattern of kynurenine aminotransferase-2 (KAT-2) - the key role enzyme in the production of neuroactive and neuroprotective kynurenic acid (KYNA) - was studied in the cerebellum of mice. It is known from literature that KAT-2 is localized mainly in astrocytes in different parts of the cerebrum. Kynurenine aminotransferase (KAT) activity in the cerebellum is relatively low and alternative production routes for KYNA have been described there. Therefore we examined the immunohistochemical pattern of KAT-2 in this part of the brain. Surprisingly, the cellular localization of KAT-2 in mice was proven to be unique; it localized characteristically in Purkinje cells and in some other types of neurons (not identified) but was not found in astrocytes nor microglia. The exclusive neuronal, but not glial localization of KAT-2 in the cerebellum is novel and may be related to its low activity and to the alternative pathways for KYNA production that have been described.


Subject(s)
Cerebellum/cytology , Cerebellum/enzymology , Neurons/enzymology , Transaminases/metabolism , Animals , Cerebellum/chemistry , Male , Mice , Mice, Inbred C57BL , Neurons/chemistry , Purkinje Cells/chemistry , Purkinje Cells/enzymology , Species Specificity , Transaminases/analysis
7.
Exp Anim ; 70(1): 84-90, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-32999214

ABSTRACT

Production of chimeric animals is often a necessity for the generation of genetically modified animals and has gained popularity in recent years in regenerative medicine for the reconstruction of xenogeneic organs. Aggregation and injection methods are generally used to produce chimeric mice. In the aggregation method, the chimeras are produced by co-culturing embryos and stem cells, and keeping them physically adhered, although it may not be an assured method for producing chimeric embryos. In the injection method, the chimeras are produced by injecting stem cells into the zona pellucida using microcapillaries; however, this technique requires a high degree of skill. This study aimed to establish a novel method for producing chimeric embryos via water-in-oil droplets that differs from conventional methods. In this study, embryonic stem cells and embryos were successfully isolated in the droplets, and the emergence of chimeric embryos was confirmed by co-culture for 6 h. Using this method, the control and operability of stem cell numbers could be regulated, and reproducibility and quantification were improved during the production of chimeric embryos. In addition to the conventional methods for producing chimeric embryos, the novel method described here could be employed for the efficient production of chimeric animals.


Subject(s)
Animals, Genetically Modified , Chimera , Coculture Techniques/methods , Embryo Culture Techniques/methods , Embryo, Mammalian , Embryonic Stem Cells , Oils , Water , Animals , Cells, Cultured , Female , Mice , Stem Cell Transplantation/methods , Zona Pellucida
8.
Zygote ; 28(3): 247-249, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32151294

ABSTRACT

Polyploids generated by natural whole genome duplication have served as a dynamic force in vertebrate evolution. As evidence for evolution, polyploid organisms exist generally, however there have been no reports of polyploid organisms in mammals. In mice, polyploid embryos under normal culture conditions normally develop to the blastocyst stage. Nevertheless, most tetraploid embryos degenerate after implantation, indicating that whole genome duplication produces harmful effects on normal development in mice. Most previous research on polyploidy has mainly focused on tetraploid embryos. Analysis of various ploidy outcomes is important to comprehend the effects of polyploidization on embryo development. The purpose of this present study was to discover the extent of the polyploidization effect on implantation and development in post-implantation embryos. This paper describes for the first time an octaploid embryo implanted in mice despite hyper-polyploidization, and indicates that these mammalian embryos have the ability to implant, and even develop, despite the harmfulness of extreme whole genome duplication.


Subject(s)
Blastocyst/metabolism , Embryo Implantation , Embryo Transfer/methods , Genome/genetics , Polyploidy , Animals , Blastocyst/cytology , Diploidy , Female , Histocytochemistry/methods , Mice, Inbred ICR , Tetraploidy
9.
Biol Reprod ; 102(5): 1134-1144, 2020 04 24.
Article in English | MEDLINE | ID: mdl-31995159

ABSTRACT

Intercellular bridges (ICBs) connecting germ cells are essential for spermatogenesis, and their deletion causes male infertility. However, the functions and component factors of ICBs are still unknown. We previously identified novel ICB-associated proteins by proteomics analysis using ICB enrichment. Here, we performed immunoprecipitation-proteomics analyses using antibodies specific to known ICB proteins MKLP1, RBM44, and ectoplasmic specialization-associated protein KIAA1210 and predicted protein complexes in the ICB cores. KIAA1210, its binding protein topoisomerase2B (TOP2B), and tight junction protein ZO1 were identified as novel ICB proteins. On the other hand, as well as KIAA1210 and TOP2B, MKLP1 and RBM44, but not TEX14, were localized at the XY body of spermatocytes, suggesting that there is a relationship between ICB proteins and meiotic chromosomes. Moreover, small RNAs interacted with an ICB protein complex that included KIAA1210, RBM44, and MKLP1. These results indicate dynamic movements of ICB proteins and suggest that ICB proteins could be involved not only in the communication between germ cells but also in their epigenetic regulation. Our results provide a novel perspective on the function of ICBs and could be helpful in revealing the biological function of the ICB.


Subject(s)
Membrane Proteins/metabolism , Protein Transport/physiology , Proteomics/methods , Testis/metabolism , Animals , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Gene Expression Regulation , Kinesins/genetics , Kinesins/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Biochem Biophys Res Commun ; 521(1): 24-30, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31635800

ABSTRACT

BACKGROUND: Cell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells. METHODS: Fused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells. RESULTS: Colonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells. CONCLUSIONS: Our results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.


Subject(s)
Cell Fusion , Fibroblasts/metabolism , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Animals , Aotidae , Cattle , Equidae , Fibroblasts/cytology , Horses , Mice , Mouse Embryonic Stem Cells/cytology , Perissodactyla , Pluripotent Stem Cells/cytology , Rabbits , Saimiri
11.
J Vet Med Sci ; 81(3): 383-388, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30674743

ABSTRACT

RNA interference (RNAi) can inhibit Influenza A virus (IAV) infection in a gene-specific manner. In this study, we constructed a transgene expressing a short hairpin RNA (shRNA) that targets the noncoding region of the IAV RNA gene encoding nucleoprotein (NP). To investigate the antiviral effects of the shRNA, we generated two transgenic mouse lines with this transgene. Unfortunately, there was no apparent difference in IAV resistance between transgenic and non-transgenic littermates. To further investigate the antiviral effects of the shRNA, we prepared mouse embryonic fibroblasts (MEFs) from transgenic and non-transgenic mice. In experimental infections using these MEFs, virus production of mouse-adapted IAV strain A/Puerto Rico/8/1934 (PR8) in the transgenic MEFs was suppressed by means of the down-regulation of the viral RNA gene transcription in the early stages of infection in comparison with non-transgenic MEFs. These results indicated that expression of the shRNA was able to confer antiviral properties against IAVs to MEFs, although the effects were limited. Our findings suggest that the shRNA targeting the noncoding region of the viral RNA (vRNA) of NP might be a supporting tool in developing influenza-resistant poultry.


Subject(s)
Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/drug effects , Orthomyxoviridae Infections/drug therapy , RNA, Small Interfering/therapeutic use , Animals , Mice , Mice, Transgenic , Nucleocapsid Proteins , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Viral Core Proteins/antagonists & inhibitors , Viral Core Proteins/genetics
12.
Brain Res Bull ; 146: 185-191, 2019 03.
Article in English | MEDLINE | ID: mdl-30639278

ABSTRACT

Manipulation of kynurenic acid (KYNA) level through kynurenine aminotransferase-2 (KAT-2) inhibition with the aim of therapy in neuro-psychiatric diseses has been the subject of extensive recent research. Although mouse models are of particular importance, neither the basic mechanism of KYNA production and release nor the relevance of KAT-2 in the mouse brain has yet been clarified. Using acute mouse brain slice preparations, we investigated the basal and L-kynurenine (L-KYN) induced KYNA production and distribution between the extracellular and intracellular compartments. Furthermore, we evaluated the effect of specific KAT-2 inhibition with the irreversible inhibitor PF-04859989. To ascertain that the observed KYNA release is not a simple consequence of general cell degradation, we examined the structural and functional integrity of the brain tissue with biochemical, histological and electrophysiological tools. We did not find relevant change in the viability of the brain tissue after several hours incubation time. HPLC measurements proved that mouse brain slices intensively produce and liberate KYNA to the extracellular compartment, while only a small proportion retained in the tissue both in the basal and L-KYN supplemented state. Finally, specific KAT-2 inhibition significantly reduced the extracellular KYNA content. Taken together, these results provide important data about KYNA production and release, and in vitro evidence for the first time of the function of KAT-2 in the adult mouse brain. Our study extends investigations of KAT-2 manipulation to mice in a bid to fully understand the function; the final, future aim is to assign therapeutical kynurenergic manipulation strategies to humans.


Subject(s)
Brain/metabolism , Kynurenic Acid/metabolism , Transaminases/metabolism , Animals , Brain/drug effects , Immunohistochemistry/methods , Kynurenic Acid/pharmacology , Kynurenine/metabolism , Kynurenine/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Transaminases/antagonists & inhibitors
13.
J Med Virol ; 91(5): 820-828, 2019 05.
Article in English | MEDLINE | ID: mdl-30575982

ABSTRACT

Ocular herpes, caused by herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections, remains an important corneal disease, which may result in loss of vision. Because the frequency of acyclovir resistance in HSV has increased, novel antiviral agents are needed for therapeutic approaches to ocular herpes. Several studies have demonstrated that fusion proteins containing entire ectodomain of HSV glycoprotein D receptors, including herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2, and the Fc portion of human IgG (HVEMIg, nectin-1Ig, and nectin-2Ig, respectively), can exert antiviral effects in vitro and in vivo. Here, to evaluate the antiviral potential of HVEMIg, nectin-1Ig, and nectin-2Ig against ocular infections with HSV, transgenic mice expressing these fusion proteins were ocularly inoculated with HSV-1 and HSV-2. Transgenic mouse lines expressing HVEMIg and nectin-1Ig showed marked resistance to ocular herpes; on the other hand, mouse lines expressing nectin-2Ig did not. Furthermore, to investigate the therapeutic effects of nectin-1Ig, which can neutralize HSVs in vitro against ocular disease, transgenic mouse serum containing nectin-1Ig was dropped into the eyes of wild-type mice after HSV infection. Reduction of severe symptoms could be observed in mice treated with nectin-1Ig serum. These results warrant further study of soluble HVEM and nectin-1 products as preventive and therapeutic agents against ocular herpes caused by HSV-1 and HSV-2 infections, especially nectin-1Ig as a new eye drop.


Subject(s)
Antiviral Agents/pharmacology , Keratitis, Herpetic/prevention & control , Receptors, Virus/metabolism , Animals , Disease Models, Animal , Disease Resistance , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Humans , Keratitis, Herpetic/pathology , Mice, Inbred C57BL , Mice, Transgenic , Recombinant Fusion Proteins/pharmacology
14.
J Vet Med Sci ; 80(10): 1479-1481, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30089742

ABSTRACT

Cultured cells are generally observed through the bottom of dishes or flasks using an inverted microscope. Two-dimensional and horizontal observation is insufficient for histological analysis of several cell lines, such as embryonic stem cells or cancer cells, because they form three-dimensional colonies. In the present study, we aimed to establish a more informative method for analysis of such stereoscopic cultured cells. We cultured mouse embryonic stem cells using a temperature-sensitive culture dish, embedded these cells in paraffin, and successfully observed vertical sections of embryonic stem cells. This vertical analysis of the stereoscopic colony emphasized structural features such as the dome shape of naïve pluripotent stem cells. This method could have the potential for analysis of three-dimensional structures and histological preservation in cultured cells.


Subject(s)
Cell Culture Techniques , Embryonic Stem Cells/cytology , Paraffin Embedding , Animals , Cell Culture Techniques/instrumentation , Cells, Cultured , Mice , Mice, Inbred ICR , Pluripotent Stem Cells , Temperature
15.
Int J Mol Sci ; 19(1)2018 Jan 13.
Article in English | MEDLINE | ID: mdl-29342882

ABSTRACT

Cell adhesion molecules (CAMs) are surface ligands, usually glycoproteins, which mediate cell-to-cell adhesion. They play a critical role in maintaining tissue integrity and mediating migration of cells, and some of them also act as viral receptors. It has been known that soluble forms of the viral receptors bind to the surface glycoproteins of the viruses and neutralize them, resulting in inhibition of the viral entry into cells. Nectin-1 is one of important CAMs belonging to immunoglobulin superfamily and herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family. Both CAMs also act as alphaherpesvirus receptor. Transgenic mice expressing the soluble form of nectin-1 or HVEM showed almost complete resistance against the alphaherpesviruses. As another CAM, sialic acid-binding immunoglobulin-like lectins (Siglecs) that recognize sialic acids are also known as an immunoglobulin superfamily member. Siglecs play an important role in the regulation of immune cell functions in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer. Siglec-9 is one of Siglecs and capsular polysaccharide (CPS) of group B Streptococcus (GBS) binds to Siglec-9 on neutrophils, leading to suppress host immune response and provide a survival advantage to the pathogen. In addition, Siglec-9 also binds to tumor-produced mucins such as MUC1 to lead negative immunomodulation. Transgenic mice expressing the soluble form of Siglec-9 showed significant resistance against GBS infection and remarkable suppression of MUC1 expressing tumor proliferation. This review describes recent developments in the understanding of the potency of soluble forms of CAMs in the transgenic mice and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.


Subject(s)
Cell Adhesion Molecules/metabolism , Communicable Diseases/metabolism , Disease Models, Animal , Neoplasms/metabolism , Animals , Animals, Genetically Modified , Humans , Solubility
16.
J Gen Virol ; 98(7): 1815-1822, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28671524

ABSTRACT

Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.


Subject(s)
Cell Adhesion Molecules/immunology , Herpes Simplex/immunology , Herpesvirus 2, Human/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Virus/immunology , Viral Envelope Proteins/metabolism , Animals , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Herpes Simplex/genetics , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpesvirus 2, Human/genetics , Herpesvirus 2, Human/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nectins , Receptors, Tumor Necrosis Factor, Member 14/genetics , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Viral Envelope Proteins/genetics
17.
Biol Reprod ; 96(2): 469-477, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28203736

ABSTRACT

Cell junctions are necessary for spermatogenesis, and there are numerous types of junctions in testis, such as blood­testis barrier, intercellular bridge, and ectoplasmic specialization (ES). The details of their functions and construction are still unknown. To identify a novel protein essential to the function of a cell junction, we enriched testis membrane protein and analyzed it using a proteomics approach. Here, we report a novel ES protein, which is encoded on the X chromosome and an ortholog of hypothetical human protein KIAA1210. KIAA1210 is expressed in testis predominantly, localized to the sex body in spermatocyte, acrosome, and near ES. Moreover, KIAA1210 possesses a topoisomerase 2 (TOP2)-associated protein PAT1 domain, a herpes simplex virus 1 (HSV-1) large tegument protein UL36 hypothetical domain, and a provisional DNA translocase FtsK domain. Using IP-proteomics with specific antibody to KIAA1210, we identified proteins including TOP2 isoforms as components of a complex with KIAA1210, in cell junctions in testis. The interaction between KIAA1210 and TOP2 was confirmed by two different proteomic analyses. Furthermore, immunofluorescence showed that KIAA1210 and TOP2B co-localize around the sex body in spermatocyte, apical ES, and residual bodies in elongated spermatids. Our findings suggest that KIAA1210 may be essential cell junction protein that interacts with TOP2B to regulate the dynamic change of chromatin structures during spermiogenesis.


Subject(s)
Acrosome/metabolism , Gene Expression Regulation/physiology , Genes, X-Linked/physiology , Membrane Proteins/metabolism , Testis/physiology , Amino Acid Sequence , Animals , Gene Expression Profiling , Male , Membrane Proteins/genetics , Mice , Protein Transport
18.
Brain Struct Funct ; 222(4): 1663-1672, 2017 May.
Article in English | MEDLINE | ID: mdl-27568378

ABSTRACT

During catabolism of tryptophan through the kynurenine (KYN) pathway, several endogenous metabolites with neuromodulatory properties are produced, of which kynurenic acid (KYNA) is one of the highest significance. The causal role of altered KYNA production has been described in several neurodegenerative and neuropsychiatric disorders (e.g., Parkinson's disease, Huntington's disease, schizophrenia) and therefore kynurenergic manipulation with the aim of therapy has recently been proposed. Conventionally, KYNA is produced from its precursor L-KYN with the aid of the astrocytic kynurenine aminotransferase-2 (KAT-2) in the murine brain. Although the mouse is a standard therapeutic research organism, the presence of KAT-2 in mice has not been described in detail. This study demonstrates the presence of kat-2 mRNA and protein throughout the adult C57Bl6 mouse brain. In addition to the former expression data from the rat, we found prominent KAT-2 expression not only in the astrocyte, but also in neurons in several brain regions (e.g., hippocampus, substantia nigra, striatum, and prefrontal cortex). A significant number of the KAT-2 positive neurons were positive for GAD67; the presence of the KAT-2 enzyme we could also demonstrate in mice brain homogenate and in cells overexpressing recombinant mouse KAT-2 protein. This new finding attributes a new role to interneuron-derived KYNA in neuronal network operation. Furthermore, our results suggest that the thorough investigation of the spatio-temporal expression pattern of the relevant enzymes of the KYN pathway is a prerequisite for developing and understanding the pharmacological and transgenic murine models of kynurenergic manipulation.


Subject(s)
Astrocytes/enzymology , Brain/enzymology , Transaminases/analysis , Animals , Male , Mice, Inbred C57BL , RNA, Messenger/analysis
19.
Proc Natl Acad Sci U S A ; 113(37): E5408-15, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27573846

ABSTRACT

Splicing can be epigenetically regulated and involved in cellular differentiation in somatic cells, but the interplay of epigenetic factors and the splicing machinery during spermatogenesis remains unclear. To study these interactions in vivo, we generated a germline deletion of MORF-related gene on chromosome 15 (MRG15), a multifunctional chromatin organizer that binds to methylated histone H3 lysine 36 (H3K36) in introns of transcriptionally active genes and has been implicated in regulation of histone acetylation, homology-directed DNA repair, and alternative splicing in somatic cells. Conditional KO (cKO) males lacking MRG15 in the germline are sterile secondary to spermatogenic arrest at the round spermatid stage. There were no significant alterations in meiotic division and histone acetylation. Specific mRNA sequences disappeared from 66 germ cell-expressed genes in the absence of MRG15, and specific intronic sequences were retained in mRNAs of 4 genes in the MRG15 cKO testes. In particular, introns were retained in mRNAs encoding the transition proteins that replace histones during sperm chromatin condensation. In round spermatids, MRG15 colocalizes with splicing factors PTBP1 and PTBP2 at H3K36me3 sites between the exons and single intron of transition nuclear protein 2 (Tnp2). Thus, our results reveal that MRG15 is essential for pre-mRNA splicing during spermatogenesis and that epigenetic regulation of pre-mRNA splicing by histone modification could be useful to understand not only spermatogenesis but also, epigenetic disorders underlying male infertile patients.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Infertility, Male/genetics , Nerve Tissue Proteins/genetics , Polypyrimidine Tract-Binding Protein/genetics , Spermatogenesis/genetics , Trans-Activators/genetics , Animals , DNA-Binding Proteins , Epigenesis, Genetic , Germ Cells/growth & development , Germ Cells/pathology , Histone-Lysine N-Methyltransferase/genetics , Humans , Infertility, Male/pathology , Male , Mice , Mice, Knockout , Nuclear Proteins/genetics , RNA Splicing/genetics , Sequence Deletion/genetics , Testis/growth & development , Testis/metabolism
20.
Microb Pathog ; 99: 106-110, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27544323

ABSTRACT

Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns. A key GBS virulence factor is its capsular polysaccharide (CPS), possessing terminal sialic acid residues that suppress host immune response and provide a survival advantage to the pathogen. CPS binds to Siglec-9 expressed on neutrophils, which is expected to down-regulate the immune responsiveness of neutrophils. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of CPS to Siglec-9 on immune cells, leading to provide antibacterial benefit against GBS infection in the transgenic mouse line expressing sSiglec-9 (sSiglec-9 Tg). The sSiglec-9 in the sera of sSiglec-9 Tg bound to the sialylated-GBS strains belonging to serotypes Ia, Ib, II, III, IV and V in whole GBS cell ELISA. When GBS cells of serotype III that is a common serotype in late-onset GBS disease (LOD) were intraperitoneally inoculated into sSiglec-9 Tg, sSiglec-9 Tg showed a significant resistance as compared with non-transgenic littermates. Furthermore, GBS serotype III organisms were not detected in cultures of the blood from surviving mice (<1 × 103 CFU/ml). These results indicated that sSiglec-9 Tg mice were more efficient in eliminating GBS and survived better after the intraperitoneal challenge with GBS serotype III bacteria.


Subject(s)
Antigens, CD/metabolism , Sepsis/immunology , Sepsis/prevention & control , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/prevention & control , Streptococcus agalactiae/immunology , Animals , Disease Resistance , Humans , Mice , Mice, Transgenic , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...