Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Int ; 45(2-3): 381-7, 2004.
Article in English | MEDLINE | ID: mdl-15145552

ABSTRACT

A novel agent, ONO-2506 [(R)-(-)-2-propyloctanoic acid, ONO Pharmaceutical Co. Ltd.] was previously shown to mitigate delayed infarct expansion through inhibition of the enhanced production of S-100beta, while inducing a prompt symptomatic improvement that attained a significant level as early as 24h after drug administration. To elucidate the mechanism underlying the prompt symptomatic improvement, the present study aimed to examine whether ONO-2506 modulates the level of extracellular glutamate ([Glu]e) in the rat subjected to transient middle cerebral artery occlusion (tMCAO). In this model, it had been shown that ONO-2506 reduces the infarct volume, improves the neurological deficits, and enhances the mRNA expression of glial glutamate transporters (GLT-1 and GLAST). The [Glu]e levels in the ischemic cortices were continuously measured using intracerebral microdialysis. The alterations in the [Glu]e levels in the sham-operated and tMCAO-operated groups with or without drug administration were compared. In the tMCAO groups, the [Glu]e level increased during tMCAO to a similar extent, returned to normal on reperfusion, and increased again around 5h. In the saline-treated group, however, the [Glu]e level further increased from 15 h on to reach about 280% of the normal level at 24h. This secondary increase in the [Glu]e level in the late phase of reperfusion was prevented by ONO-2506. The intracerebral infusion of glutamate transporter inhibitor, l-trans-pyrrolidine-2,4-dicarboxylic acid, at 24h after tMCAO induced an increase in the [Glu]e level, which was marked in both the sham-operated and ONO-2506-treated groups, but much less pronounced in the saline-treated group. The above results suggest that functional modulation of activated astrocytes by pharmacological agents like ONO-2506 may inhibit the secondary rise of [Glu]e level in the late phase of reperfusion, leading to amelioration of delayed infarct expansion and neurological deficits.


Subject(s)
Caprylates/metabolism , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Ischemic Attack, Transient/metabolism , Animals , Cerebral Cortex/drug effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Kinetics , Microdialysis , Rats , Rats, Wistar , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...