Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Biochem ; 174(5): 421-431, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37491733

ABSTRACT

Calpain is an intracellular cysteine protease that cleaves its specific substrates in a limited region to modulate cellular function. Calpain-1 (C1) and calpain-2 (C2) are ubiquitously expressed in mammalian cells, but calpain-3 (C3) is a skeletal muscle-specific type. In the course of calpain activation, the N-terminal regions of all three isoforms are clipped off in an intramolecular or intermolecular fashion. C1 proteolyzes C2 to promote further proteolysis, but C2 proteolyzes C1 to suspend C1 proteolysis, indicating the presence of C1-C2 reciprocal proteolysis. However, whether C3 is involved in the calpain proteolysis network is unclear. To address this, we examined whether GFP-tagged C3:C129S (GFP-C3:CS), an inactive protease form of C3, was a substrate for C1 or C2 in HEK cells. Intriguingly, the N-terminal region of C3:CS was cleaved by C1 and C2 at the site identical to that of the C3 autoproteolysis site. Furthermore, the N-terminal clipping of C3:CS by C1 and C2 was observed in mouse skeletal muscle lysates. Meanwhile, C3 preferentially cleaved the N-terminus of C1 over that of C2, and the sizes of these cleaved proteins were identical to their autoproteolysis forms. Our findings suggest an elaborate inter-calpain network to prime and suppress proteolysis of other calpains.


Subject(s)
Calpain , Muscle, Skeletal , Mice , Animals , Calpain/chemistry , Calpain/metabolism , Proteolysis , Muscle, Skeletal/metabolism , Mammals
2.
Nat Commun ; 13(1): 7857, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543799

ABSTRACT

Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.


Subject(s)
Autophagy , Cytochrome-B(5) Reductase , Endoplasmic Reticulum , Ubiquitins , Animals , Mice , Autophagy/physiology , Cell Cycle Proteins/metabolism , Cytochrome-B(5) Reductase/chemistry , Cytochrome-B(5) Reductase/metabolism , Endoplasmic Reticulum/metabolism , Protein Processing, Post-Translational , Ubiquitination/physiology , Ubiquitins/chemistry , Ubiquitins/metabolism
3.
Biochim Biophys Acta Mol Cell Res ; 1869(3): 119188, 2022 03.
Article in English | MEDLINE | ID: mdl-34906616

ABSTRACT

Calpain-10 (CAPN10) belongs to the calpain superfamily. Genetic polymorphisms of the CAPN10 gene are associated with susceptibility to develop type 2 diabetes mellitus. Although the role of CAPN10 in the pathophysiology of diabetes has been extensively investigated, its biochemical properties are largely unknown. In this report, we made the surprising discovery that CAPN10 cDNA transcripts are subject to cryptic splicing and unexpected protein products were expressed. The same set of splicing products was reproducibly detected in four types of cultured cells including the primary culture of mouse myoblast. At least, one of the products was identical to a natural splicing variant. Sequence analysis of the splicing potential of CAPN10 cDNA, together with mutagenesis studies, resulted in the identification of a powerful splicing acceptor site at the junction of the sequences encoded by exons 9 and 10. We successfully extended the analysis to create expression construct resistant to splicing for both human and mouse CAPN10. The construct allowed us to analyze two major CAPN10 isoforms and reveal their difference in substrate proteolysis and potential cell functions. These results demonstrate that proteins produced from cDNA do not necessarily reflect the original nucleotide sequence. We provide insight into the property of recombinantly expressed CAPN10 proteins in cultured cells circumventing unexpected protein products.


Subject(s)
Alternative Splicing , Calpain/genetics , Calpain/metabolism , Gene Expression Regulation , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Protein Isoforms , Rats , Rats, Wistar
4.
Biosci Rep ; 40(11)2020 11 27.
Article in English | MEDLINE | ID: mdl-33078830

ABSTRACT

Calpain-1 and calpain-2 are highly structurally similar isoforms of calpain. The calpains, a family of intracellular cysteine proteases, cleave their substrates at specific sites, thus modifying their properties such as function or activity. These isoforms have long been considered to function in a redundant or complementary manner, as they are both ubiquitously expressed and activated in a Ca2+- dependent manner. However, studies using isoform-specific knockout and knockdown strategies revealed that each calpain species carries out specific functions in vivo. To understand the mechanisms that differentiate calpain-1 and calpain-2, we focused on the efficiency and longevity of each calpain species after activation. Using an in vitro proteolysis assay of troponin T in combination with mass spectrometry, we revealed distinctive aspects of each isoform. Proteolysis mediated by calpain-1 was more sustained, lasting as long as several hours, whereas proteolysis mediated by calpain-2 was quickly blunted. Calpain-1 and calpain-2 also differed from each other in their patterns of autolysis. Calpain-2-specific autolysis sites in its PC1 domain are not cleaved by calpain-1, but calpain-2 cuts calpain-1 at the corresponding position. Moreover, at least in vitro, calpain-1 and calpain-2 do not perform substrate proteolysis in a synergistic manner. On the contrary, calpain-1 activity is suppressed in the presence of calpain-2, possibly because it is cleaved by the latter protein. These results suggest that calpain-2 functions as a down-regulation of calpain-1, a mechanism that may be applicable to other calpain species as well.


Subject(s)
Calpain/metabolism , Troponin T/metabolism , Autolysis , Calpain/genetics , Enzyme Activation , Enzyme Stability , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Proteolysis , Substrate Specificity , Time Factors
5.
Biol Open ; 9(9)2020 09 04.
Article in English | MEDLINE | ID: mdl-32801165

ABSTRACT

Calpain-3 (CAPN3) is a muscle-specific type of calpain whose protease activity is triggered by Ca2+ Here, we developed CAPN3 sensor probes (SPs) to detect activated-CAPN3 using a fluorescence/Förster resonance energy transfer (FRET) technique. In our SPs, partial amino acid sequence of calpastatin, endogenous CAPN inhibitor but CAPN3 substrate, is inserted between two different fluorescence proteins that cause FRET. Biochemical and spectral studies revealed that CAPN3 cleaved SPs and changed emission wavelengths of SPs. Importantly, SPs were scarcely cleaved by CAPN1 and CAPN2. Furthermore, our SP successfully captured the activation of endogenous CAPN3 in living myotubes treated with ouabain. Our SPs would become a promising tool to detect the dynamics of CAPN3 protease activity in living cells.


Subject(s)
Biosensing Techniques/methods , Calpain/metabolism , Fluorescence , Fluorescent Dyes , Molecular Imaging/methods , Muscle Cells/metabolism , Muscle Proteins/metabolism , Animals , Calpain/genetics , Fluorescence Resonance Energy Transfer , Gene Expression , Humans , Mice , Muscle Proteins/genetics
6.
Biochim Biophys Acta Proteins Proteom ; 1868(7): 140411, 2020 07.
Article in English | MEDLINE | ID: mdl-32200007

ABSTRACT

Calpain-3 (CAPN3), a 94-kDa member of the calpain protease family, is abundant in skeletal muscle. Mutations in the CAPN3 gene cause limb girdle muscular dystrophy type 2A, indicating that CAPN3 plays important roles in muscle physiology. CAPN3 has several unique features. A crystallographic study revealed that its C-terminal penta-EF-hand domains form a homodimer, suggesting that CAPN3 functions as a homodimeric protease. To analyze complex formation of CAPN3 in a more convenient manner, we performed blue native polyacrylamide gel electrophoresis and found that the observed molecular weight of native CAPN3, as well as recombinant CAPN3, was larger than 240 kDa. Further analysis by cross-linking and sequential immunoprecipitation revealed that CAPN3 in fact forms a homotrimer. Trimer formation was abolished by the deletion of the PEF domain, but not the CAPN3-specific insertion sequences NS, IS1, and IS2. The PEF domain alone formed a homodimer, as reported, but addition of the adjacent CBSW domain to its N-terminus reinforced the trimer-forming property. Collectively, these results suggest that CAPN3 forms a homotrimer in which the PEF domain's dimer-forming ability is influenced by other domains.


Subject(s)
Calpain/metabolism , Muscle Proteins/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Animals , Calpain/chemistry , Calpain/genetics , Cell Line , EF Hand Motifs , Female , Genetic Predisposition to Disease/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/chemistry , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Mutagenesis, Insertional , Mutation , Protein Domains
7.
Nat Rev Drug Discov ; 15(12): 854-876, 2016 12.
Article in English | MEDLINE | ID: mdl-27833121

ABSTRACT

Calpains are a family of proteases that were scientifically recognized earlier than proteasomes and caspases, but remain enigmatic. However, they are known to participate in a multitude of physiological and pathological processes, performing 'limited proteolysis' whereby they do not destroy but rather modulate the functions of their substrates. Calpains are therefore referred to as 'modulator proteases'. Multidisciplinary research on calpains has begun to elucidate their involvement in pathophysiological mechanisms. Therapeutic strategies targeting malfunctions of calpains have been developed, driven primarily by improvements in the specificity and bioavailability of calpain inhibitors. Here, we review the calpain superfamily and calpain-related disorders, and discuss emerging calpain-targeted therapeutic strategies.


Subject(s)
Calpain , Drug Discovery , Animals , Calpain/metabolism , Humans , Pharmaceutical Research
8.
Mol Cell Proteomics ; 15(4): 1262-80, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26796116

ABSTRACT

Calpains are intracellular Ca(2+)-regulated cysteine proteases that are essential for various cellular functions. Mammalian conventional calpains (calpain-1 and calpain-2) modulate the structure and function of their substrates by limited proteolysis. Thus, it is critically important to determine the site(s) in proteins at which calpains cleave. However, the calpains' substrate specificity remains unclear, because the amino acid (aa) sequences around their cleavage sites are very diverse. To clarify calpains' substrate specificities, 84 20-mer oligopeptides, corresponding to P10-P10' of reported cleavage site sequences, were proteolyzed by calpains, and the catalytic efficiencies (kcat/Km) were globally determined by LC/MS. This analysis revealed 483 cleavage site sequences, including 360 novel ones. Thekcat/Kms for 119 sites ranged from 12.5-1,710 M(-1)s(-1) Although most sites were cleaved by both calpain-1 and -2 with a similarkcat/Km, sequence comparisons revealed distinct aa preferences at P9-P7/P2/P5'. The aa compositions of the novel sites were not statistically different from those of previously reported sites as a whole, suggesting calpains have a strict implicit rule for sequence specificity, and that the limited proteolysis of intact substrates is because of substrates' higher-order structures. Cleavage position frequencies indicated that longer sequences N-terminal to the cleavage site (P-sites) were preferred for proteolysis over C-terminal (P'-sites). Quantitative structure-activity relationship (QSAR) analyses using partial least-squares regression and >1,300 aa descriptors achievedkcat/Kmprediction withr= 0.834, and binary-QSAR modeling attained an 87.5% positive prediction value for 132 reported calpain cleavage sites independent of our model construction. These results outperformed previous calpain cleavage predictors, and revealed the importance of the P2, P3', and P4' sites, and P1-P2 cooperativity. Furthermore, using our binary-QSAR model, novel cleavage sites in myoglobin were identified, verifying our predictor. This study increases our understanding of calpain substrate specificities, and opens calpains to "next-generation,"i.e.activity-related quantitative and cooperativity-dependent analyses.


Subject(s)
Calpain/chemistry , Chromatography, Liquid/methods , Mass Spectrometry/methods , Oligopeptides/chemistry , Oligopeptides/metabolism , Amino Acid Sequence , Animals , Binding Sites , Catalysis , Humans , Models, Molecular , Proteolysis , Quantitative Structure-Activity Relationship , Substrate Specificity
9.
Biochimie ; 122: 169-87, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26363099

ABSTRACT

Calpains are Ca(2+)-regulated proteolytic enzymes that are involved in a variety of biological phenomena. Calpains process substrates by limited proteolysis to modulate various protein functions in the cell, and are thus called "modulator proteases." CAPN3, previously called p94 or calpain-3, has unique features that are not found in any of the other 14 human calpains, or even in other proteases. For instance, CAPN3 undergoes extremely rapid and exhaustive autodegradation. CAPN3 is also the first (and so far, the only) intracellular enzyme found to depend on Na(+) for its activation. CAPN3 has both proteolytic and non-proteolytic functions. It has the interesting distinction of being the only protease, other than a few virus proteases, with the ability to regain protease function after its autolytic dissociation; this occurs through a process known as intermolecular complementation (iMOC). Gene mutations causing CAPN3 defects are responsible for limb-girdle muscular dystrophy type 2A (LGMD2A). Unusual characteristics of CAPN3 have fascinated researchers, but have also hampered conventional biochemical analysis. In this review, we describe significant findings about CAPN3 from its discovery to the present, and suggest promising avenues for future CAPN3 research.


Subject(s)
Calpain/genetics , Genetic Predisposition to Disease/genetics , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Calpain/metabolism , Gene Expression Profiling , Humans , Models, Genetic , Muscle Proteins/metabolism , Muscular Dystrophies, Limb-Girdle/enzymology , Proteolysis , Sodium/metabolism , Substrate Specificity
11.
Data Brief ; 5: 366-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26958593

ABSTRACT

CAPN3 is a calpain superfamily member that is predominantly expressed in skeletal muscle. So far, clear CAPN3 orthologs were found only in vertebrates. CAPN3 is a unique protease in that it undergoes extremely rapid and exhaustive autolysis and that autolyzed fragments spontaneously associate each other to reconstitute the proteolytic activity. These unique properties of CAPN3 are dependent on IS1 and IS2, two CAPN3-characterizing sequences that do not exist in other calpains or any other proteases. To understand how IS1 and IS2 are conserved among vertebrates, this data article provides amino acid sequence alignment of representative vertebrate CAPN3s. For further analysis and discussion, see Ono et al. [1].

12.
Proc Natl Acad Sci U S A ; 111(51): E5527-36, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25512505

ABSTRACT

CAPN3/p94/calpain-3, a calpain protease family member predominantly expressed in skeletal muscle, possesses unusually rapid and exhaustive autolytic activity. Mutations in the human CAPN3 gene impairing its protease functions cause limb-girdle muscular dystrophy type 2A (LGMD2A); yet, the connection between CAPN3's autolytic activity and the enzyme's function in vivo remain unclear. Here, we demonstrated that CAPN3 protease activity was reconstituted by intermolecular complementation (iMOC) between its two autolytic fragments. Furthermore, the activity of full-length CAPN3 active-site mutants was surprisingly rescued through iMOC with autolytic fragments containing WT amino acid sequences. These results provide evidence that WT CAPN3 can be formed by the iMOC of two different complementary CAPN3 mutants. The finding of iMOC-mediated restoration of calpain activity indicates a novel mechanism for the genotype-phenotype links in LGMD2A.


Subject(s)
Calpain/metabolism , Muscle Proteins/metabolism , Animals , COS Cells , Calpain/chemistry , Calpain/genetics , Chlorocebus aethiops , Humans , Muscle Proteins/chemistry , Muscle Proteins/genetics , Mutation , Proteolysis
13.
Genes Cells ; 19(11): 830-41, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25252031

ABSTRACT

CAPN3 (also called p94/calpain-3) is a skeletal muscle-specific calpain, an intracellular cysteine protease. Loss of CAPN3 protease activity and/or structural functions cause limb-girdle muscular dystrophy type 2A (LGMD2A). However, the precise mechanism of action of CAPN3 in skeletal muscles in vivo remains largely elusive. By studying the protein modifications that regulate CAPN3 activity, we found that CAPN3 was phosphorylated. By performing mutagenesis and mass spectrometry analyses, we identified two Ser residues at positions 629 and 636 in human CAPN3 that are phosphorylated and showed that S629 is a major phosphorylation site. Intriguingly, rapid and exhaustive autolysis of CAPN3 was slightly attenuated by the substitution of S629. In skeletal muscles, phosphorylated CAPN3 was enriched in the myofibril fraction. These results imply that phosphorylated CAPN3 is a myofibril structural component and/or participates in myofibril-based signaling pathways, rather than functions as a protease. We evaluated the relationship between phosphorylated CAPN3 and the pathology of LGMD2A. The level of phosphorylated CAPN3 was greatly reduced in LGMD2A muscles. Our findings suggest that phosphorylated CAPN3 is involved in the pathology of LGMD2A through defects in myofibril integrity and/or signaling pathways. This is the first report that phosphorylation of CAPN3 may be involved in its physiological function.


Subject(s)
Calpain/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myofibrils/metabolism , Adolescent , Animals , COS Cells , Calpain/genetics , Chlorocebus aethiops , Female , Humans , Male , Middle Aged , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Mutagenesis, Insertional , Mutation , Phosphorylation , Serine/metabolism , Signal Transduction , Young Adult
14.
FEBS J ; 281(16): 3642-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24953135

ABSTRACT

Calpain-7 (CAPN7) is a unique intracellular cysteine protease that has a tandem repeat of microtubule interacting and trafficking (MIT) domains and lacks a penta-EF-hand domain. Although the MIT domains of CAPN7 were previously shown to interact with a subset of endosomal sorting complex required for transport (ESCRT)-III and ESCRT-III-related proteins, including charged multivesicular body protein 1 and increased sodium tolerance (IST)1, knowledge of the involvement of the protease in membrane trafficking has been limited. In the present study, compared with control cells, we found that epidermal growth factor receptor (EGFR) degradation was mildly delayed in CAPN7-knockdown HeLa cells and mouse embryonic fibroblast cells established from CAPN7 knockout (Capn7(-/-) ) mice. Re-expression of wild-type CAPN7 but not a protease-inactive mutant of CAPN7 (CAPN7(C290S) ) resulted in a recovery of the rate of EGFR degradation. We found, by immunofluorescence microscopic analysis, that monomeric GFP fused with the protease-inactive mutant of CAPN7 [monomeric green fluorescent protein (mGFP)-CAPN7(C290S) ] was mobilized to EGFR-positive endosomes upon epidermal growth factor stimulation in HeLa cells. Although mGFP-CAPN7(C290S) exhibited dominant-negative effects on EGFR degradation, a deletion mutant of MIT domains in mGFP-CAPN7(C290S) did not have such properties, suggesting that the interaction between the MIT domains and ESCRT proteins is important for the function of CAPN7. Moreover, we found that epidermal growth factor stimulation induces translocation of IST1 from the cytosol to endosomes positive in both EGFR and mGFP-CAPN7(C290S) . When IST1 was knocked down, mGFP-CAPN7(C290S) lost its co-localization with EGFR. These results demonstrate for the first time that the proteolytic activity of CAPN7 is important for the acceleration of EGFR degradation via the endosomal sorting pathway utilizing a part of the ESCRT system. STRUCTURED DIGITAL ABSTRACT: EGFR and CAPN7 colocalize by fluorescence microscopy (View interaction) EGFR, CAPN7 and IST1 colocalize by fluorescence microscopy (View interaction) EEA1 and CAPN7 colocalize by fluorescence microscopy (View interaction) CAPN7 and LAMP1 colocalize by fluorescence microscopy (View interaction).


Subject(s)
Calpain/physiology , Endosomes/enzymology , ErbB Receptors/metabolism , Animals , Calpain/chemistry , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Oncogene Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Transport , Proteolysis
15.
J Gen Physiol ; 143(2): 215-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24470489

ABSTRACT

Titin is a molecular spring that determines the passive stiffness of muscle cells. Changes in titin's stiffness occur in various myopathies, but whether these are a cause or an effect of the disease is unknown. We studied a novel mouse model in which titin's stiffness was slightly increased by deleting nine immunoglobulin (Ig)-like domains from titin's constitutively expressed proximal tandem Ig segment (IG KO). KO mice displayed mild kyphosis, a phenotype commonly associated with skeletal muscle myopathy. Slow muscles were atrophic with alterations in myosin isoform expression; functional studies in soleus muscle revealed a reduced specific twitch force. Exon expression analysis showed that KO mice underwent additional changes in titin splicing to yield smaller than expected titin isoforms that were much stiffer than expected. Additionally, splicing occurred in the PEVK region of titin, a finding confirmed at the protein level. The titin-binding protein Ankrd1 was highly increased in the IG KO, but this did not play a role in generating small titin isoforms because titin expression was unaltered in IG KO mice crossed with Ankrd1-deficient mice. In contrast, the splicing factor RBM20 (RNA-binding motif 20) was also significantly increased in IG KO mice, and additional differential splicing was reversed in IG KO mice crossed with a mouse with reduced RBM20 activity. Thus, increasing titin's stiffness triggers pathological changes in skeletal muscle, with an important role played by RBM20.


Subject(s)
Connectin/physiology , Immunoglobulins/deficiency , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Protein Kinases/genetics , Animals , Humans , Immunoglobulins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Muscle, Skeletal/physiology , Organ Culture Techniques , Protein Kinases/deficiency , Protein Splicing/genetics , Tandem Repeat Sequences/genetics
16.
PLoS Genet ; 9(8): e1003668, 2013.
Article in English | MEDLINE | ID: mdl-23935533

ABSTRACT

Calpains are Ca(2+)-dependent modulator Cys proteases that have a variety of functions in almost all eukaryotes. There are more than 10 well-conserved mammalian calpains, among which eutherian calpain-6 (CAPN6) is unique in that it has amino acid substitutions at the active-site Cys residue (to Lys in humans), strongly suggesting a loss of proteolytic activity. CAPN6 is expressed predominantly in embryonic muscles, placenta, and several cultured cell lines. We previously reported that CAPN6 is involved in regulating microtubule dynamics and actin reorganization in cultured cells. The physiological functions of CAPN6, however, are still unclear. Here, to elucidate CAPN6's in vivo roles, we generated Capn6-deficient mice, in which a lacZ expression cassette was integrated into the Capn6 gene. These Capn6-deficient mouse embryos expressed lacZ predominantly in skeletal muscles, as well as in cartilage and the heart. Histological and biochemical analyses showed that the CAPN6 deficiency promoted the development of embryonic skeletal muscle. In primary cultured skeletal muscle cells that were induced to differentiate into myotubes, Capn6 expression was detected in skeletal myocytes, and Capn6-deficient cultures showed increased differentiation. Furthermore, we found that CAPN6 was expressed in the regenerating skeletal muscles of adult mice after cardiotoxin-induced degeneration. In this experimental system, Capn6-deficient mice exhibited more advanced skeletal-muscle regeneration than heterozygotes or wild-type mice at the same time point. These results collectively showed that a loss of CAPN6 promotes skeletal muscle differentiation during both development and regeneration, suggesting a novel physiological function of CAPN6 as a suppressor of skeletal muscle differentiation.


Subject(s)
Calpain/genetics , Embryonic Development/genetics , Microtubules/metabolism , Muscle, Skeletal/growth & development , Regeneration/genetics , Animals , Calpain/biosynthesis , Calpain/deficiency , Cell Differentiation , Gene Expression Regulation, Developmental , Humans , Mice , Muscle Development/genetics
17.
J Mol Biol ; 425(16): 2955-72, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23707407

ABSTRACT

CAPN3/p94/calpain-3 is a skeletal-muscle-specific member of the calpain protease family. Multiple muscle cell functions have been reported for CAPN3, and mutations in this protease cause limb-girdle muscular dystrophy type 2A. Little is known about the molecular mechanisms that allow CAPN3 to be so multifunctional. One hypothesis is that the very rapid and exhaustive autolytic activity of CAPN3 needs to be suppressed by dynamic molecular interactions for specific periods of time. The previously identified interaction between CAPN3 and connectin/titin, a giant molecule in muscle sarcomeres, supports this assumption; however, the regulatory mechanisms of non-sarcomere-associated CAPN3 are unknown. Here, we report that a novel CAPN3-binding protein, PLEIAD [Platform element for inhibition of autolytic degradation; originally called SIMC1/C5orf25 (SUMO-interacting motif containing protein 1/chromosome 5open reading frame 25)], suppresses the protease activity of CAPN3. Database analyses showed that PLEIAD homologs, like CAPN3 homologs, are evolutionarily conserved in vertebrates. Furthermore, we found that PLEIAD also interacts with CTBP1 (C-terminal binding protein 1), a transcriptional co-regulator, and CTBP1 is proteolyzed in COS7 cells expressing CAPN3. The identified cleavage sites in CTBP1 suggested that it undergoes functional modification upon its proteolysis by CAPN3, as well as by conventional calpains. These results indicate that PLEIAD can shift its major function from CAPN3 suppression to CAPN3-substrate recruitment, depending on the cellular context. Taken together, our data suggest that PLEIAD is a novel regulatory scaffold for CAPN3, as reflected in its name.


Subject(s)
Alcohol Oxidoreductases/metabolism , Calpain/metabolism , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Muscle Proteins/metabolism , Animals , COS Cells , Chlorocebus aethiops , Gene Expression Regulation , Humans , Muscle, Skeletal/enzymology , Muscle, Skeletal/physiology , Protein Binding , Proteolysis
18.
Biol Chem ; 393(9): 853-71, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22944687

ABSTRACT

Calpains are intracellular Ca(2+)-dependent Cys proteases that play important roles in a wide range of biological phenomena via the limited proteolysis of their substrates. Genetic defects in calpain genes cause lethality and/or functional deficits in many organisms, including humans. Despite their biological importance, the mechanisms underlying the action of calpains, particularly of their substrate specificities, remain largely unknown. Studies show that certain sequence preferences influence calpain substrate recognition, and some properties of amino acids have been related successfully to substrate specificity and to the calpains' 3D structure. The full spectrum of this substrate specificity, however, has not been clarified using standard sequence analysis algorithms, e.g., the position-specific scoring-matrix method. More advanced bioinformatics techniques were used recently to identify the substrate specificities of calpains and to develop a predictor for calpain cleavage sites, demonstrating the potential of combining empirical data acquisition and machine learning. This review discusses the calpains' substrate specificities, introducing the benefits of bioinformatics applications. In conclusion, machine learning has led to the development of useful predictors for calpain cleavage sites, although the accuracy of the predictions still needs improvement. Machine learning has also elucidated information about the properties of calpains' substrate specificities, including a preference for sequences over secondary structures and the existence of a substrate specificity difference between two similar conventional calpains, which has never been indicated biochemically.


Subject(s)
Calpain/metabolism , Amino Acid Sequence , Calpain/chemistry , Calpain/genetics , Humans , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Substrate Specificity
19.
Cardiovasc Res ; 96(1): 11-22, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22542715

ABSTRACT

Calpains, a family of Ca(2+)-dependent cytosolic cysteine proteases, can modulate their substrates' structure and function through limited proteolytic activity. In the human genome, there are 15 calpain genes. The most-studied calpains, referred to as conventional calpains, are ubiquitous. While genetic studies in mice have improved our understanding about the conventional calpains' physiological functions, especially those essential for mammalian life as in embryogenesis, many reports have pointed to overactivated conventional calpains as an exacerbating factor in pathophysiological conditions such as cardiovascular diseases and muscular dystrophies. For treatment of these diseases, calpain inhibitors have always been considered as drug targets. Recent studies have introduced another aspect of calpains that calpain activity is required to protect the heart and skeletal muscle against stress. This review summarizes the functions and regulation of calpains, focusing on the relevance of calpains to cardiovascular disease.


Subject(s)
Calpain/metabolism , Muscle, Skeletal/enzymology , Myocardium/enzymology , Animals , Cardiovascular Diseases/enzymology , Enzyme Activation , Humans , Muscular Diseases/enzymology
20.
Biochim Biophys Acta ; 1824(1): 224-36, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21864727

ABSTRACT

Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02). Recent expansion of sequence data across the species definitively shows that calpain has been present throughout evolution; calpains are found in almost all eukaryotes and some bacteria, but not in archaebacteria. Fifteen genes within the human genome encode a calpain-like protease domain. Interestingly, some human calpains, particularly those with non-classical domain structures, are very similar to calpain homologs identified in evolutionarily distant organisms. Three-dimensional structural analyses have helped to identify calpain's unique mechanism of activation; the calpain protease domain comprises two core domains that fuse to form a functional protease only when bound to Ca(2+)via well-conserved amino acids. This finding highlights the mechanistic characteristics shared by the numerous calpain homologs, despite the fact that they have divergent domain structures. In other words, calpains function through the same mechanism but are regulated independently. This article reviews the recent progress in calpain research, focusing on those studies that have helped to elucidate its mechanism of action. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.


Subject(s)
Calpain/metabolism , Calpain/physiology , Proteolysis , Animals , Calpain/chemistry , Calpain/genetics , Humans , Models, Biological , Models, Molecular , Phylogeny , Protein Conformation , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...