Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Evol ; 90(3): 224-231, 2017.
Article in English | MEDLINE | ID: mdl-28850945

ABSTRACT

The olfactory system of mammals comprises a main olfactory system that detects hundreds of odorants and a vomeronasal system that detects specific chemicals such as pheromones. The main (MOB) and accessory (AOB) olfactory bulbs are the respective primary centers of the main olfactory and vomeronasal systems. Most mammals including artiodactyls possess a large MOB and a comparatively small AOB, whereas most cetaceans lack olfactory bulbs. The common hippopotamus (Hippopotamus amphibius) is semiaquatic and belongs to the order Cetartiodactyla, family Hippopotamidae, which seems to be the closest extant family to cetaceans. The present study evaluates the significance of the olfactory system in the hippopotamus by histologically analyzing the MOB and AOB of a male common hippopotamus. The MOB comprised six layers (olfactory nerve, glomerular, external plexiform, mitral cell, internal plexiform, and granule cell), and the AOB comprised vomeronasal nerve, glomerular, plexiform, and granule cell layers. The MOB contained mitral cells and tufted cells, and the AOB possessed mitral/tufted cells. These histological features of the MOB and the AOB were similar to those in most artiodactyls. All glomeruli in the AOB were positive for anti-Gαi2, but weakly positive for anti-Gαo, suggesting that the hippopotamus vomeronasal system expresses vomeronasal type 1 receptors with a high affinity for volatile compounds. These findings suggest that the olfactory system of the hippopotamus is as well developed as that of other artiodactyl species and that the hippopotamus might depend on its olfactory system for terrestrial social communication.


Subject(s)
Artiodactyla/anatomy & histology , Olfactory Bulb/anatomy & histology , Olfactory Bulb/cytology , Animals , Male , Neurons , Olfactory Nerve/physiology , Olfactory Pathways/anatomy & histology , Olfactory Pathways/physiology , Smell/physiology
2.
Microsc Res Tech ; 80(6): 652-656, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28094892

ABSTRACT

The vomeronasal organ (VNO) that preferentially detects species-specific substances is diverse among animal species, and its morphological properties seem to reflect the ecological features of animals. This histological study of two female reticulated giraffes (Giraffa camelopardalis reticulata) found that the VNO is developed in giraffes. The lateral and medial regions of the vomeronasal lumen were covered with sensory and nonsensory epithelia, respectively. The vomeronasal glands were positive for periodic acid-Schiff and alcian blue (pH 2.5) stains. The VNO comprises several large veins like others in the order Cetartiodactyla, suggesting that these veins function in a pumping mechanism in this order. In addition, numerous thin-walled vessels located immediately beneath the epithelia covering the lumen entirely surrounded the vomeronasal lumen. This sponge-like structure might function as a specific secondary pump in giraffes.


Subject(s)
Giraffes/anatomy & histology , Sexual Behavior, Animal/physiology , Vomeronasal Organ/anatomy & histology , Vomeronasal Organ/blood supply , Animals , Female , Pheromones
SELECTION OF CITATIONS
SEARCH DETAIL
...