Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 855: 159564, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36332720

ABSTRACT

The recent influx of microplastics into the Arctic Ocean may increase environmental stress on the western Arctic marine ecosystem, which is experiencing significant sea-ice loss due to global warming. Quantitative data on microplastics in the western Arctic Ocean are very limited, and the microplastic budget of the water column is completely unknown. To fill in gaps in our knowledge of Arctic microplastics, we observed surface concentrations (number of particles per unit volume of seawater) of meso- and microplastics using a neuston net, and we observed wind speeds and significant wave heights in the Chukchi Sea, Bering Strait, and Bering Sea. From these observations, we estimated the total number (particle inventory) and mass (mass inventory) of microplastics in the entire water column by taking into account the effect of vertical mixing. The particle inventory of microplastics in the Chukchi Sea ranged from 0 to 18,815 pieces km-2 with a mean and standard deviation of 5236 ± 6127 pieces km-2. The mass inventory ranged from 0 to 445 g km-2 with a mean and standard deviation of 124 ± 145 g km-2. Mean particle inventories for the Chukchi Sea were one-thirtieth of those for the Arctic Ocean on the Atlantic side and less than one-tenth of the average for the global ocean, suggesting that the Chukchi Sea is less polluted. However, the annual flux of microplastics from the Pacific Ocean into the Chukchi Sea, estimated from microplastic concentrations in the Bering Strait, was about 5.5 times greater than the total amount of microplastic in the entire Chukchi Sea water. This suggests that microplastic inflows from the Pacific Ocean are accumulating in large amounts in reservoirs other than the Chukchi Sea water (e.g., sea ice and seafloor sediments) or in the downstream regions of the Pacific-origin water.


Subject(s)
Microplastics , Water , Plastics , Ecosystem , Pacific Ocean
2.
Sci Rep ; 11(1): 14190, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34276049

ABSTRACT

Biosynthesis of hydrocarbons is a promising approach for the production of alternative sources of energy because of the emerging need to reduce global consumption of fossil fuels. However, the suitability of biogenic hydrocarbons as fuels is limited because their range of the number of carbon atoms is small, and/or they contain unsaturated carbon bonds. Here, we report that a marine phytoplankton, Dicrateria rotunda, collected from the western Arctic Ocean, can synthesize a series of saturated hydrocarbons (n-alkanes) from C10H22 to C38H78, which are categorized as petrol (C10-C15), diesel oils (C16-C20), and fuel oils (C21-C38). The observation that these n-alkanes were also produced by ten other cultivated strains of Dicrateria collected from the Atlantic and Pacific oceans suggests that this capability is a common characteristic of Dicrateria. We also identified that the total contents of the n-alkanes in the Arctic D. rotunda strain increased under dark and nitrogen-deficient conditions. The unique characteristic of D. rotunda could contribute to the development of a new approach for the biosynthesis of n-alkanes.

3.
PLoS One ; 16(2): e0245936, 2021.
Article in English | MEDLINE | ID: mdl-33596231

ABSTRACT

Plankton samples have been routinely collected and preserved in formalin in many laboratories and museums for more than 100 years. Recently, attention has turned to use DNA information from formalin-fixed samples to examine changes in plankton diversity over time. However, no molecular ecological studies have evaluated the impact of formalin fixation on the genetic composition of the plankton community structure. Here, we developed a method for extracting DNA from archived formalin-preserved plankton samples to determine their community structure by a DNA metabarcoding approach. We found that a lysis solution consisting of borate-NaOH buffer (pH 11) with SDS and proteinase K effectively cleaved the cross-link formed by formalin fixation. DNA was extracted from samples preserved for decades in formalin, and the diatom community of the extracted DNA was in good agreement with the microscopy analysis. Furthermore, we stored a plankton sample for 1.5 years and demonstrated that 18S rRNA gene community structures did not change significantly from non-formalin-fixed, time-zero samples. These results indicate that our method can be used to describe the original community structure of plankton archived in formalin for years. Our approach will be useful for examining the long-term variation of plankton diversity by metabarcoding analysis of 18S rRNA gene community structure.


Subject(s)
DNA Barcoding, Taxonomic/methods , Formaldehyde , Plankton/classification , Plankton/genetics , Tissue Fixation , DNA/genetics , DNA/isolation & purification , Polymerase Chain Reaction
5.
Nat Commun ; 6: 7587, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26119338

ABSTRACT

Warming of high northern latitudes in the Pliocene (5.33-2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling.

6.
Nat Commun ; 5: 3950, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24862402

ABSTRACT

The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans.


Subject(s)
Ecosystem , Membrane Transport Proteins/physiology , Seawater , Water Movements , Arctic Regions , Geography , Ice Cover , Models, Theoretical , Seasons
7.
Nature ; 441(7093): 606-9, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16752440

ABSTRACT

It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45 Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (approximately 50 Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an approximately 800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from approximately 10 degrees C to 13 degrees C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas.


Subject(s)
Ferns/growth & development , Geologic Sediments/analysis , Seawater/analysis , Arctic Regions , Ferns/cytology , Fossils , Greenhouse Effect , History, Ancient , Ice Cover , Oceans and Seas , Rain , Spores/isolation & purification , Time Factors
8.
Nature ; 441(7093): 601-5, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16738653

ABSTRACT

The history of the Arctic Ocean during the Cenozoic era (0-65 million years ago) is largely unknown from direct evidence. Here we present a Cenozoic palaeoceanographic record constructed from >400 m of sediment core from a recent drilling expedition to the Lomonosov ridge in the Arctic Ocean. Our record shows a palaeoenvironmental transition from a warm 'greenhouse' world, during the late Palaeocene and early Eocene epochs, to a colder 'icehouse' world influenced by sea ice and icebergs from the middle Eocene epoch to the present. For the most recent approximately 14 Myr, we find sedimentation rates of 1-2 cm per thousand years, in stark contrast to the substantially lower rates proposed in earlier studies; this record of the Neogene reveals cooling of the Arctic that was synchronous with the expansion of Greenland ice (approximately 3.2 Myr ago) and East Antarctic ice (approximately 14 Myr ago). We find evidence for the first occurrence of ice-rafted debris in the middle Eocene epoch (approximately 45 Myr ago), some 35 Myr earlier than previously thought; fresh surface waters were present at approximately 49 Myr ago, before the onset of ice-rafted debris. Also, the temperatures of surface waters during the Palaeocene/Eocene thermal maximum (approximately 55 Myr ago) appear to have been substantially warmer than previously estimated. The revised timing of the earliest Arctic cooling events coincides with those from Antarctica, supporting arguments for bipolar symmetry in climate change.


Subject(s)
Climate , Geologic Sediments/analysis , Seawater , Temperature , Animals , Arctic Regions , Ferns , Fossils , Geologic Sediments/chemistry , Greenhouse Effect , History, Ancient , Ice Cover , Oceans and Seas , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...