Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 85(6): 1364-1370, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33851984

ABSTRACT

Mushrooms of the Omphalotus genus are known to be rich in secondary metabolites. In the quest for new bioactive compounds, we analyzed the compounds isolated from the mycelium of the poisonous mushroom Omphalotus japonicus. As a result, a new polyisoprenepolyol, which was named omphaloprenol A, was identified, along with known substances such as hypsiziprenol A10 and A11, illudin S, and ergosterol. The chemical structure of omphaloprenol A was elucidated by nuclear magnetic resonance and infrared spectroscopies and mass spectrometry, and its bioactivity was investigated. Omphaloprenol A showed growth promoting activity against the root of lettuce seeds and cytotoxicity against HL60 cells. To the best of our knowledge, this is the first report on the isolation of a polyisoprenepolyol compound from Omphalotaceae mushrooms.


Subject(s)
Agaricales/chemistry , Mycelium/chemistry , HL-60 Cells , Humans , Lactuca/drug effects
2.
Bioorg Med Chem ; 28(1): 115154, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31753800

ABSTRACT

Although cancer cells often harbor supernumerary centrosomes, they form pseudo-bipolar spindles via centrosome clustering, instead of lethal multipolar spindles, and thus avoid cell death. Kinesin-14 HSET/KIFC1 is a crucial protein involved in centrosome clustering. Accordingly, a compound that targets HSET could potentially inhibit cancer cell proliferation in a targeted manner. Here, we report three natural compounds derived from Solidago altissima that restored the growth of fission yeast cells exhibiting lethal HSET overproduction (positive screening), namely solidagonic acid (SA) (1), kolavenic acid analog (KAA: a stereo isomer at C-9 and C-10 of 6ß-tigloyloxykolavenic acid) (2), and kolavenic acid (KA) (3). All three compounds suppressed fission yeast cell death and enabled reversion of the mitotic spindles from a monopolar to bipolar morphology. Compound 2, which exerted the strongest activity against HSET-overproducing yeast cells, also inhibited centrosome clustering in MDA-MB-231 human breast adenocarcinoma cells, which contained large numbers of supernumerary centrosomes. These natural compounds may be useful as bioprobes in studies of HSET function. Moreover, compound 2 is a prime contender in the development of novel agents for cancer treatment.


Subject(s)
Diterpenes/pharmacology , Kinesins/antagonists & inhibitors , Mitosis/drug effects , Schizosaccharomyces/drug effects , Cell Line, Tumor , Centrosome/drug effects , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Humans , Kinesins/biosynthesis , Molecular Structure , Schizosaccharomyces/growth & development , Spindle Apparatus/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...