Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 18(6)2021 11 09.
Article in English | MEDLINE | ID: mdl-34644689

ABSTRACT

Objective.We propose a novel method to estimate the instantaneous oscillatory phase to implement a real-time system for state-informed sensory stimulation in electroencephalography (EEG) experiments.Approach.The method uses Kalman filter-based prediction to estimate current and future EEG signals. We tested the performance of our method in a real-time situation.Main results.Our method showed higher accuracy in predicting the EEG phase than the conventional autoregressive (AR) model-based method.Significance.A Kalman filter allows us to easily estimate the instantaneous phase of EEG oscillations based on the automatically estimated AR model implemented in a real-time signal processing machine. The proposed method has a potential for versatile applications targeting the modulation of EEG phase dynamics and the plasticity of brain networks in relation to perceptual or cognitive functions.


Subject(s)
Electroencephalography , Signal Processing, Computer-Assisted , Algorithms , Brain/physiology , Brain Mapping , Electroencephalography/methods
2.
J Pers Med ; 11(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440652

ABSTRACT

It is a technically challenging problem to assess the instantaneous brain state using electroencephalography (EEG) in a real-time closed-loop setup because the prediction of future signals is required to define the current state, such as the instantaneous phase and amplitude. To accomplish this in real-time, a conventional Yule-Walker (YW)-based autoregressive (AR) model has been used. However, the brain state-dependent real-time implementation of a closed-loop system employing an adaptive method has not yet been explored. Our primary purpose was to investigate whether time-series forward prediction using an adaptive least mean square (LMS)-based AR model would be implementable in a real-time closed-loop system or not. EEG state-dependent triggers synchronized with the EEG peaks and troughs of alpha oscillations in both an open-eyes resting state and a visual task. For the resting and visual conditions, statistical results showed that the proposed method succeeded in giving triggers at a specific phase of EEG oscillations for all participants. These individual results showed that the LMS-based AR model was successfully implemented in a real-time closed-loop system targeting specific phases of alpha oscillations and can be used as an adaptive alternative to the conventional and machine-learning approaches with a low computational load.

3.
PLoS Comput Biol ; 14(1): e1005928, 2018 01.
Article in English | MEDLINE | ID: mdl-29337999

ABSTRACT

Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results.


Subject(s)
Brain/physiology , Electroencephalography , Oscillometry , Adult , Bayes Theorem , Female , Healthy Volunteers , Humans , Male , Models, Neurological , Normal Distribution , Periodicity , Reproducibility of Results , Signal Processing, Computer-Assisted , Systems Analysis , Young Adult
4.
PLoS One ; 12(8): e0183146, 2017.
Article in English | MEDLINE | ID: mdl-28800613

ABSTRACT

Neural oscillation is attracting attention as an underlying mechanism for speech recognition. Speech intelligibility is enhanced by the synchronization of speech rhythms and slow neural oscillation, which is typically observed as human scalp electroencephalography (EEG). In addition to the effect of neural oscillation, it has been proposed that speech recognition is enhanced by the identification of a speaker's motor signals, which are used for speech production. To verify the relationship between the effect of neural oscillation and motor cortical activity, we measured scalp EEG, and simultaneous EEG and functional magnetic resonance imaging (fMRI) during a speech recognition task in which participants were required to recognize spoken words embedded in noise sound. We proposed an index to quantitatively evaluate the EEG phase effect on behavioral performance. The results showed that the delta and theta EEG phase before speech inputs modulated the participant's response time when conducting speech recognition tasks. The simultaneous EEG-fMRI experiment showed that slow EEG activity was correlated with motor cortical activity. These results suggested that the effect of the slow oscillatory phase was associated with the activity of the motor cortex during speech recognition.


Subject(s)
Motor Cortex/physiology , Speech Intelligibility/physiology , Speech Perception/physiology , Adult , Brain Mapping , Electroencephalography , Female , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/anatomy & histology , Speech Acoustics
SELECTION OF CITATIONS
SEARCH DETAIL
...