Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 2993, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154466

ABSTRACT

Dynamical coupling with high-quality factor resonators is essential in a wide variety of hybrid quantum systems such as circuit quantum electrodynamics and opto/electromechanical systems. Nuclear spins in solids have a long relaxation time and thus have the potential to be implemented into quantum memories and sensors. However, state manipulation of nuclear spins requires high-magnetic fields, which is incompatible with state-of-the-art quantum hybrid systems based on superconducting microwave resonators. Here we investigate an electromechanical resonator whose electrically tunable phonon state imparts a dynamically oscillating strain field to the nuclear spin ensemble located within it. As a consequence of the dynamical strain, we observe both nuclear magnetic resonance (NMR) frequency shifts and NMR sidebands generated by the electromechanical phonons. This prototype system potentially opens up quantum state engineering for nuclear spins, such as coherent coupling between sound and nuclei, and mechanical cooling of solid-state nuclei.

2.
Phys Rev Lett ; 119(18): 187703, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219564

ABSTRACT

We investigated the effect of an in-plane electric field on drifting spins in a GaAs quantum well. Kerr rotation images of the drifting spins revealed that the spin precession wavelength increases with increasing drift velocity regardless of the transport direction. A model developed for drifting spins with a heated electron distribution suggests that the in-plane electric field enhances the effective magnetic field component originating from the cubic Dresselhaus spin-orbit interaction.

3.
Nat Commun ; 7: 11132, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-27063939

ABSTRACT

Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

4.
Nat Commun ; 6: 8478, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26477487

ABSTRACT

The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure-cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron-hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays.

5.
Phys Rev Lett ; 106(3): 036801, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405286

ABSTRACT

Carrier-induced dynamic backaction in micromechanical resonators is demonstrated. Thermal vibration of an n-GaAs/i-GaAs bilayer cantilever is amplified by optical band-gap excitation, and for the excitation power above a critical value, self-oscillations are induced. These phenomena are found in the [1[over ¯]10]-oriented cantilever, whereas the damping (deamplification) is observed in the [1[over ¯]10] orientation. This optomechanical coupling does not require any optical cavities but is instead based on the piezoelectric effect that is generated by photoinduced carriers.


Subject(s)
Mechanical Phenomena , Microtechnology/methods , Optical Phenomena , Vibration , Arsenicals/chemistry , Gallium/chemistry , Photons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...