Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15504, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969719

ABSTRACT

Time-resolved X-ray magnetic circular dichroism under the effects of ferromagnetic resonance (FMR), known as X-ray ferromagnetic resonance (XFMR) measurements, enables direct detection of precession dynamics of magnetic moment. Here we demonstrated XFMR measurements and Bayesian analyses as a quantitative probe for the precession of spin and orbital magnetic moments under the FMR effect. Magnetization precessions in two different Pt/Ni-Fe thin film samples were directly detected. Furthermore, the ratio of dynamical spin and orbital magnetic moments was evaluated quantitatively by Bayesian analyses for XFMR energy spectra around the Ni L 2 , 3 absorption edges. Our study paves the way for a microscopic investigation of the contribution of the orbital magnetic moment to magnetization dynamics.

2.
Nat Commun ; 15(1): 1999, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453940

ABSTRACT

Helimagnetic structures, in which the magnetic moments are spirally ordered, host an internal degree of freedom called chirality corresponding to the handedness of the helix. The chirality seems quite robust against disturbances and is therefore promising for next-generation magnetic memory. While the chirality control was recently achieved by the magnetic field sweep with the application of an electric current at low temperature in a conducting helimagnet, problems such as low working temperature and cumbersome control and detection methods have to be solved in practical applications. Here we show chirality switching by electric current pulses at room temperature in a thin-film MnAu2 helimagnetic conductor. Moreover, we have succeeded in detecting the chirality at zero magnetic fields by means of simple transverse resistance measurement utilizing the spin Berry phase in a bilayer device composed of MnAu2 and a spin Hall material Pt. These results may pave the way to helimagnet-based spintronics.

3.
Sci Adv ; 6(40)2020 Sep.
Article in English | MEDLINE | ID: mdl-32998887

ABSTRACT

Breaking of spatial inversion symmetry induces unique phenomena in condensed matter. In particular, by combining this symmetry with magnetic fields or another type of time-reversal symmetry breaking, noncentrosymmetric materials can be made to exhibit nonreciprocal responses, which are responses that differ for rightward and leftward stimuli. However, the effect of spatial inversion symmetry breaking on thermal transport in uniform media remains to be elucidated. Here, we show nonreciprocal thermal transport in the multiferroic helimagnet TbMnO3 The longitudinal thermal conductivity depends on whether the thermal current is parallel or antiparallel to the vector product of the electric polarization and magnetization. This phenomenon is thermal rectification that is controllable with external fields in a uniform crystal. This discovery may pave the way to thermal diodes with controllability and scalability.

4.
Nano Lett ; 15(8): 5438-42, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26237493

ABSTRACT

Three-dimensional forms of skyrmion aggregate, such as a cubic lattice of skyrmions, are anticipated to exist, yet their direct observations remain elusive. Here, we report real-space observations of spin configurations of the skyrmion-antiskyrmion cubic-lattice in MnGe with a very short period (∼3 nm) and hence endowed with the largest skyrmion number density. The skyrmion lattices parallel to the {100} atomic lattices are directly observed using high-resolution Lorentz transmission electron microscopes, simultaneously with underlying atomic-lattice fringes.

5.
Nat Nanotechnol ; 9(5): 337-42, 2014 May.
Article in English | MEDLINE | ID: mdl-24727689

ABSTRACT

Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.

6.
Nano Lett ; 12(3): 1673-7, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22360155

ABSTRACT

Observing and characterizing the spin distributions on a nanometer scale are of vital importance for understanding nanomagnetism and its application to spintronics. The magnetic structure in MnSi thin samples prepared from a bulk, which undergoes a transition from a helix to a skyrmion lattice, was investigated by in situ observation using Lorentz microscopy. Stripe domains were observed at zero applied field below 22.5 K. A skyrmion lattice with 6-fold symmetry in real space appeared when a field of 0.18 T was applied normal to the film plane. The lattice constant was estimated to be 18 nm, almost identical to the helical period. In comparison with the marginally stable skyrmion phase in a bulk sample, the skyrmion phase was stable over a wide range of temperatures and magnetic fields in the thin samples.


Subject(s)
Magnets , Manganese/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon Compounds/chemistry , Equipment Design , Equipment Failure Analysis , Magnetic Fields , Materials Testing , Particle Size
7.
Science ; 319(5870): 1643-6, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18356519

ABSTRACT

The mutual control of the electric and magnetic properties of a solid is currently of great interest because of the possible application for novel electronic devices. We report on the low-magnetic-field (for example, B values of +/-30 milliteslas) control of the polarization (P) vector in a hexaferrite, Ba2Mg2Fe12O22, which shows the helimagnetic spin structure with the propagation vector k0 parallel to [001]. The B-induced transverse conical spin structure carries the P vector directing perpendicular to both B and k0, in accord with the recently proposed spin-current model. Then, the oscillating or multidirectionally rotating B produces the cyclic displacement current via the flexible handling of the magnetic cone axis.

8.
Science ; 311(5759): 359-61, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16424334

ABSTRACT

Helical spin order in magnetic materials has been investigated only in reciprocal space. We visualized the helical spin order and dynamics in a metal silicide in real space by means of Lorentz electron microscopy. The real space of the helical spin order proves to be much richer than that expected from the averaged structure; it exhibits a variety of magnetic defects similar to atomic dislocations in the crystal lattice. The application of magnetic fields allows us to directly observe the deformation processes of the helical spin order accompanied by nucleation, movement, and annihilation of the magnetic defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...