Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 8(23): e2102097, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34672114

ABSTRACT

Introducing artificial strain in epitaxial thin films is an effective strategy to alter electronic structures of transition metal oxides (TMOs) and to induce novel phenomena and functionalities not realized in bulk crystals. This study reports a breaking of the conventional trade-off relation in thermopower (S)-conductivity (σ) and demonstrates a 2 orders of magnitude enhancement of power factor (PF) in compressively strained LaTiO3 (LTO) films. By varying substrates and reducing film thickness down to 4 nm, the out-of-plane to the in-plane lattice parameter ratio is controlled from 0.992 (tensile strain) to 1.034 (compressive strain). This tuning induces the electronic structure change from a Mott insulator to a metal and leads to a 103 -fold increase in σ up to 2920 S cm-1 . Concomitantly, the sign of S inverts from positive to negative, and both σ and S increase and break the trade-off relation between them in the n-type region. As a result, the PF (=S2 σ) is significantly enhanced to 300 µW m- 1 K-2 , which is 102 times larger than that of bulk LTO. Present results propose epitaxial strain as a means to finely tune strongly correlated TMOs close to their Mott transition, and thus to harness the hidden large thermoelectric PF.

2.
J Phys Condens Matter ; 28(25): 255001, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27168317

ABSTRACT

In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+ to 4+ by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

3.
Sci Rep ; 6: 25819, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27174791

ABSTRACT

Proton and hydroxyl ion play an essential role for tuning functionality of oxides because their electronic state can be controlled by modifying oxygen off-stoichiometry and/or protonation. Tungsten trioxide (WO3), a well-known electrochromic (EC) material for smart window, is a wide bandgap insulator, whereas it becomes a metallic conductor HxWO3 by protonation. Although one can utilize electrochromism together with metal-insulator (MI) switching for one device, such EC-MI switching cannot be utilized in current EC devices because of their two-terminal structure with parallel-plate configuration. Here we demonstrate a transparent EC-MI switchable device with three-terminal TFT-type structure using amorphous (a-) WO3 channel layer, which was fabricated on glass substrate at room temperature. We used water-infiltrated nano-porous glass, CAN (calcium aluminate with nano-pores), as a liquid-leakage-free solid gate insulator. At virgin state, the device was fully transparent in the visible-light region. For positive gate voltage, the active channel became dark blue, and electrical resistivity of the a-WO3 layer drastically decreased with protonation. For negative gate voltage, deprotonation occurred and the active channel returned to transparent insulator. Good cycleability of the present transparent EC-MI switching device would have potential for the development of advanced smart windows.

SELECTION OF CITATIONS
SEARCH DETAIL
...