Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 133: 105360, 2022 09.
Article in English | MEDLINE | ID: mdl-35839635

ABSTRACT

Strengthening of biomedical Co-Cr-Mo alloys has been explored via thermomechanical processing for enhancing the durability of their biomedical applications. However, the effects of cold and hot deformation on the cellular activity continue to be unclear. In this study, we prepared Co-Cr-Mo alloy rods via cold swaging and hot-caliber rolling and studied the relationship between the microstructure and cellular response of pre-osteoblasts. The cold-swaged rod experienced strain-induced martensitic transformation, which increased the volume fraction of the hexagonal close-packed (hcp) ε-martensite to ∼60 vol.% with an increase in area reduction (r) to 30%. The 111γ fiber texture of the face-centered cubic (fcc) γ-matrix followed the Shoji-Nishiyama orientation relationship with ε-martensite. Cell culture results revealed beneficial effects of cold swaging on the cell response, in terms of adhesion, proliferation and morphology of cells, although increasing r did not significantly affect cellular metabolism levels. The addition of small content of Zr (0.04 wt.%) led to enhanced focal adhesion of cells, which became more significant at higher r. The microstructural evolution during hot-caliber rolling, namely, grain refinement without any phase transformation and strong texture development, did not appreciably affect the cellular activity. These findings are envisaged to facilitate alloy design and microstructural optimization for favorable tuning the osseointegration of biomedical Co-Cr-Mo alloys.


Subject(s)
Alloys , Biocompatible Materials , Alloys/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing
2.
Nat Nanotechnol ; 16(4): 409-413, 2021 04.
Article in English | MEDLINE | ID: mdl-33479541

ABSTRACT

Many established, but also potential future applications of NiTi-based shape memory alloys (SMA) in biomedical devices and solid-state refrigeration require long fatigue life with 107-109 duty cycles1,2. However, improving the fatigue resistance of NiTi often compromises other mechanical and functional properties3,4. Existing efforts to improve the fatigue resistance of SMA include composition control for coherent phase boundaries5-7 and microstructure control such as precipitation8,9 and grain-size reduction3,4. Here, we extend the strategy to the nanoscale and improve fatigue resistance of NiTi via a hybrid heterogenous nanostructure. We produced a superelastic NiTi nanocomposite with crystalline and amorphous phases via severe plastic deformation and low-temperature annealing. The as-produced nanocomposite possesses a recoverable strain of 4.3% and a yield strength of 2.3 GPa. In cyclic compression experiments, the nanostructured NiTi micropillars endure over 108 reversible-phase-transition cycles under a stress of 1.8 GPa. We attribute the enhanced properties to the mutual strengthening of nanosized amorphous and crystalline phases where the amorphous phase suppresses dislocation slip in the crystalline phase while the crystalline phase hinders shear band propagation in the amorphous phase. The synergy of the properties of crystalline and amorphous phases at the nanoscale could be an effective method to improve fatigue resistance and strength of SMA.

3.
Sensors (Basel) ; 17(12)2017 Dec 09.
Article in English | MEDLINE | ID: mdl-29232824

ABSTRACT

CMOS image sensors (CISs) with global shutter (GS) function are strongly required in order to avoid image degradation. However, CISs with GS function have generally been inferior to the rolling shutter (RS) CIS in performance, because they have more components. This problem is remarkable in small pixel pitch. The newly developed 3.4 µm pitch GS CIS solves this problem by using multiple accumulation shutter technology and the gentle slope light guide structure. As a result, the developed GS pixel achieves 1.8 e- temporal noise and 16,200 e- full well capacity with charge domain memory in 120 fps operation. The sensitivity and parasitic light sensitivity are 28,000 e-/lx·s and -89 dB, respectively. Moreover, the incident light angle dependence of sensitivity and parasitic light sensitivity are improved by the gentle slope light guide structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...