Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 41(14): 6857-6865, 2023.
Article in English | MEDLINE | ID: mdl-35983627

ABSTRACT

New hybrid compounds belonging to the class of 1,4-disubstituted 1,2,3-triazoles were synthesized. The structural characterization of the synthesized compounds was performed using IR, 1H-NMR, 13C NMR and elemental analysis techniques. Diarylketones 1a and 1b were used as starting compounds for the synthesis of triazoles. The corresponding diarylmethanol derivatives (2a,b) were obtained from reduction of ketone units with NaBH4. Oxyalkynes (3a,b) were obtained by treating the hydroxyl group with NaH in anhydrous THF and then with propargylbromide. The target hybrid structures 6a-n were obtained from the metal-catalyzed "click reaction" of the arylazide and alkyne units. The newly synthesized compounds were structurally analysed using 1H-NMR, 13C-NMR, elemental analysis, LC-MS and FT-IR. The antioxidant and anticancer activities of all compounds were investigated. It has been determined that the new hybrid structures have very good antioxidant and anticancer activities according to the standards. In particular, compounds 6b, 6h, 6i and 6j (IC50: 1.87, 12.5, 7.22, 8.04 µM) showed excellent activity compared to standard 5-Fu (IC50: 40.89 µM). According to the results of molecular docking of compounds 6b and 6i with the highest cancer activity, MetAP-2 was found to have a high affinity through exposed polar and apolar contacts with fundemental residues in the binding pocket.Communicated by Ramaswamy H. Sarma.

2.
Chem Biodivers ; 19(5): e202100787, 2022 May.
Article in English | MEDLINE | ID: mdl-35315972

ABSTRACT

In this study, a series of new hybrid molecules containing two important functional groups on the same skeleton were designed. 4-Hydroxybenzaldehyde and its two different derivatives were converted into their respective sulphonates by interacting with tosylchloride and methanesulfonyl chloride. Then, the desired molecules were synthesized by adding diethoxyphosphonate to the aldehyde group. Also, novel synthesis of hybrid compounds (4a-c and 5a-c) were tested toward some metabolic enzymes like carbonic anhydrase I and II isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE) enzyme. The synthesis of hybrid compounds (4a-c and 5a-c) showed Ki values of in range of 25.084±4.73-69.853±15.19 nM against hCA I, 32.325±1.67-82.761±22.73 nM against hCA II and 1.699±0.25 and 3.500±0.91 nM against AChE. For these compounds, compound 4c showed maximum inhibition effect against hCA I and hCA II isoenzymes and compound 5b showed maximum inhibition effect against AChE enzyme. By performing docking studies of the most active compounds for their binding modes and interactions were determined.


Subject(s)
Acetylcholinesterase , Carbonic Anhydrase II , Acetylcholinesterase/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Isoenzymes/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
3.
J Biomol Struct Dyn ; 40(21): 11082-11094, 2022.
Article in English | MEDLINE | ID: mdl-34355663

ABSTRACT

Four new diarylmethylamine imine compounds (5a-5d) were prepared in order to examine their DNA binding properties, antimicrobial activity and molecular docking. The compounds were characterized by the common spectroscopic and analytic methods. Furthermore, solid-state structure of compounds 5a and 5c were determined by single-crystal X-ray diffraction studies. The compounds were then investigated for their DNA binding properties employing UV absorption, fluorescence spectroscopy under the physiological pH condition Tris-HCl buffer at pH 7.4. The compounds 5a-5d showed moderate binding constants with Kb values of 3.56 ± 0.3 × 104, 2.18 ± 0.2 × 105, 1.44 ± 0.3 × 105 and 2.56 ± 0.3 × 104 M-1, respectively. The molecular dockings were performed to investigate the ligand-DNA interactions. The in-silico DNA-compound interaction studies showed that the compounds interact with DNA in groove binding mode. Antimicrobial activity studies of imine compounds were tested against E. coli as bacteria, S. typhimurium, S. aureus, B. cereus, B. subtilis, and C. albicans as fungi. While all compounds show moderate activity against bacteria, no activity against fungi has been investigated.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Infective Agents , Escherichia coli , Molecular Docking Simulation , Escherichia coli/metabolism , Staphylococcus aureus , DNA/chemistry , Bacteria/metabolism , Fungi , Imines/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...