Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Glob Pediatr Health ; 10: 2333794X231212819, 2023.
Article in English | MEDLINE | ID: mdl-38073666

ABSTRACT

Objectives. To describe RDS in neonatal deaths at the CHAMPS-Kenya site between 2017 and 2021. Methods. We included 165 neonatal deaths whose their Causes of death (COD) were determined by a panel of experts using data from post-mortem conducted through minimally invasive tissue specimen testing, clinical records, and verbal autopsy. Results. Twenty-six percent (43/165) of neonatal deaths were attributable to RDS. Most cases occurred in low birthweight and preterm neonates. From these cases, less than half of the hospitalizations were diagnosed with RDS before death, and essential diagnostic tests were not performed in most cases. Most cases received suboptimal levels of supplemental oxygen, and critical interventions like surfactant replacement therapy and mechanical ventilation were not adequately utilized when available. Conclusion. The study highlights the urgent need for improved diagnosis and management of RDS, emphasizing the importance of increasing clinical suspicion and enhancing training in its clinical management to reduce mortality rates.

2.
Gates Open Res ; 7: 101, 2023.
Article in English | MEDLINE | ID: mdl-37990692

ABSTRACT

Background: SARS-CoV-2 has extensively spread in cities and rural communities, and studies are needed to quantify exposure in the population. We report seroprevalence of SARS-CoV-2 in two well-characterized populations in Kenya at two time points. These data inform the design and delivery of public health mitigation measures. Methods: Leveraging on existing population based infectious disease surveillance (PBIDS) in two demographically diverse settings, a rural site in western Kenya in Asembo, Siaya County, and an urban informal settlement in Kibera, Nairobi County, we set up a longitudinal cohort of randomly selected households with serial sampling of all consenting household members in March and June/July 2021. Both sites included 1,794 and 1,638 participants in the March and June/July 2021, respectively. Individual seroprevalence of SARS-CoV-2 antibodies was expressed as a percentage of the seropositive among the individuals tested, accounting for household clustering and weighted by the PBIDS age and sex distribution. Results: Overall weighted individual seroprevalence increased from 56.2% (95%CI: 52.1, 60.2%) in March 2021 to 63.9% (95%CI: 59.5, 68.0%) in June 2021 in Kibera. For Asembo, the seroprevalence almost doubled from 26.0% (95%CI: 22.4, 30.0%) in March 2021 to 48.7% (95%CI: 44.3, 53.2%) in July 2021. Seroprevalence was highly heterogeneous by age and geography in these populations-higher seroprevalence was observed in the urban informal settlement (compared to the rural setting), and children aged <10 years had the lowest seroprevalence in both sites. Only 1.2% and 1.6% of the study participants reported receipt of at least one dose of the COVID-19 vaccine by the second round of serosurvey-none by the first round. Conclusions: In these two populations, SARS-CoV-2 seroprevalence increased in the first 16 months of the COVID-19 pandemic in Kenya. It is important to prioritize additional mitigation measures, such as vaccine distribution, in crowded and low socioeconomic settings.

3.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37219944

ABSTRACT

BackgroundSARS-CoV-2 infection in Africa has been characterized by a less severe disease profile than what has been observed elsewhere, but the profile of SARS-CoV-2-specific adaptive immunity in these mainly asymptomatic patients has not, to our knowledge, been analyzed.MethodsWe collected blood samples from residents of rural Kenya (n = 80), who had not experienced any respiratory symptoms or had contact with individuals with COVID-19 and had not received COVID-19 vaccines. We analyzed spike-specific antibodies and T cells specific for SARS-CoV-2 structural (membrane, nucleocapsid, and spike) and accessory (ORF3a, ORF7, ORF8) proteins. Pre-pandemic blood samples collected in Nairobi (n = 13) and blood samples from mild-to-moderately symptomatic COVID-19 convalescent patients (n = 36) living in the urban environment of Singapore were also studied.ResultsAmong asymptomatic Africans, we detected anti-spike antibodies in 41.0% of the samples and T cell responses against 2 or more SARS-CoV-2 proteins in 82.5% of samples examined. Such a pattern was absent in the pre-pandemic samples. Furthermore, distinct from cellular immunity in European and Asian COVID-19 convalescents, we observed strong T cell immunogenicity against viral accessory proteins (ORF3a, ORF8) but not structural proteins, as well as a higher IL-10/IFN-γ cytokine ratio profile.ConclusionsThe high incidence of T cell responses against different SARS-CoV-2 proteins in seronegative participants suggests that serosurveys underestimate SARS-CoV-2 prevalence in settings where asymptomatic infections prevail. The functional and antigen-specific profile of SARS-CoV-2-specific T cells in African individuals suggests that environmental factors can play a role in the development of protective antiviral immunity.FundingUS Centers for Disease Control and Prevention, Division of Global Health Protection; the Singapore Ministry of Health's National Medical Research Council (COVID19RF3-0060, COVID19RF-001, COVID19RF-008, MOH-StaR17Nov-0001).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , Kenya/epidemiology , T-Lymphocytes , COVID-19/epidemiology , COVID-19 Vaccines , Prevalence , Antibodies, Viral
4.
Clin Infect Dis ; 76(76 Suppl1): S87-S96, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37074429

ABSTRACT

BACKGROUND: Non-typhoidal Salmonella (NTS) is a common cause of gastroenteritis in young children, with limited data on NTS serovars and antimicrobial resistance in Africa. METHODS: We determined the prevalence of Salmonella spp. and frequency of antimicrobial resistance among serovars identified in stools of 0-59 month-old children with moderate-to-severe diarrhea (MSD) and controls enrolled in the Vaccine Impact on Diarrhea in Africa (VIDA) Study in The Gambia, Mali, and Kenya in 2015-2018, and compared with data from the Global Enteric Multicenter Study (GEMS; 2007-2010) and the GEMS-1A study (2011). Salmonella spp. was detected by quantitative real-time PCR (qPCR) and culture-based methods. Identification of serovars was determined by microbiological methods. RESULTS: By qPCR, the prevalence of Salmonella spp. among MSD cases was 4.0%, 1.6%, and 1.9% and among controls was 4.6%, 2.4%, and 1.6% in The Gambia, Mali, and Kenya, respectively, during VIDA. We observed year-to-year variation in serovar distribution and variation between sites. In Kenya, Salmonella enterica serovar Typhimurium decreased (78.1% to 23.1%; P < .001) among cases and controls from 2007 to 2018, whereas serogroup O:8 increased (8.7% to 38.5%; P = .04). In The Gambia, serogroup O:7 decreased from 2007 to 2018 (36.3% to 0%; P = .001) but S. enterica serovar Enteritidis increased during VIDA (2015 to 2018; 5.9% to 50%; P = .002). Only 4 Salmonella spp. were isolated in Mali during all 3 studies. Multidrug resistance was 33.9% in Kenya and 0.8% in The Gambia across all 3 studies. Ceftriaxone resistance was only observed in Kenya (2.3%); NTS isolates were susceptible to ciprofloxacin at all sites. CONCLUSIONS: Understanding variability in serovar distribution will be important for the future deployment of vaccines against salmonellosis in Africa.


Subject(s)
Anti-Infective Agents , Typhoid Fever , Vaccines , Child , Humans , Child, Preschool , Infant, Newborn , Infant , Prevalence , Salmonella typhimurium , Salmonella enteritidis , Diarrhea/epidemiology , Diarrhea/microbiology , Serogroup , Mali/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
Clin Infect Dis ; 76(76 Suppl1): S77-S86, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37074433

ABSTRACT

BACKGROUND: To address knowledge gaps regarding diarrheagenic Escherichia coli (DEC) in Africa, we assessed the clinical and epidemiological features of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC) positive children with moderate-to-severe diarrhea (MSD) in Mali, The Gambia, and Kenya. METHODS: Between May 2015 and July 2018, children aged 0-59 months with medically attended MSD and matched controls without diarrhea were enrolled. Stools were tested conventionally using culture and multiplex polymerase chain reaction (PCR), and by quantitative PCR (qPCR). We assessed DEC detection by site, age, clinical characteristics, and enteric coinfection. RESULTS: Among 4840 children with MSD and 6213 matched controls enrolled, 4836 cases and 1 control per case were tested using qPCR. Of the DEC detected with TAC, 61.1% were EAEC, 25.3% atypical EPEC (aEPEC), 22.4% typical EPEC (tEPEC), and 7.2% STEC. Detection was higher in controls than in MSD cases for EAEC (63.9% vs 58.3%, P < .01), aEPEC (27.3% vs 23.3%, P < .01), and STEC (9.3% vs 5.1%, P < .01). EAEC and tEPEC were more frequent in children aged <23 months, aEPEC was similar across age strata, and STEC increased with age. No association between nutritional status at follow-up and DEC pathotypes was found. DEC coinfection with Shigella/enteroinvasive E. coli was more common among cases (P < .01). CONCLUSIONS: No significant association was detected between EAEC, tEPEC, aEPEC, or STEC and MSD using either conventional assay or TAC. Genomic analysis may provide a better definition of the virulence factors associated with diarrheal disease.


Subject(s)
Coinfection , Enteropathogenic Escherichia coli , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Child , Humans , Escherichia coli Infections/epidemiology , Escherichia coli Infections/diagnosis , Shiga-Toxigenic Escherichia coli/genetics , Coinfection/epidemiology , Diarrhea/epidemiology , Diarrhea/diagnosis , Enteropathogenic Escherichia coli/genetics , Kenya
6.
Public Health Nutr ; 26(12): 3013-3022, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36871962

ABSTRACT

OBJECTIVE: Identifying factors that may influence aflatoxin exposure in children under 5 years of age living in farming households in western Kenya. DESIGN: We used a mixed methods design. The quantitative component entailed serial cross-sectional interviews in 250 farming households to examine crop processing and conservation practices, household food storage and consumption and local understandings of aflatoxins. Qualitative data collection included focus group discussions (N 7) and key informant interviews (N 13) to explore explanations of harvesting and post-harvesting techniques and perceptions of crop spoilage. SETTING: The study was carried out in Asembo, a rural community where high rates of child stunting exist. PARTICIPANTS: A total of 250 female primary caregivers of children under 5 years of age and thirteen experts in farming and food management participated. RESULTS: Study results showed that from a young age, children routinely ate maize-based dishes. Economic constraints and changing environmental patterns guided the application of sub-optimal crop practices involving early harvest, poor drying, mixing spoiled with good cereals and storing cereals in polypropylene bags in confined quarters occupied by humans and livestock and raising risks of aflatoxin contamination. Most (80 %) smallholder farmers were unaware of aflatoxins and their harmful economic and health consequences. CONCLUSIONS: Young children living in subsistence farming households may be at risk of exposure to aflatoxins and consequent ill health and stunting. Sustained efforts to increase awareness of the risks of aflatoxins and control measures among subsistence farmers could help to mitigate practices that raise exposure.


Subject(s)
Aflatoxins , Child , Humans , Female , Child, Preschool , Food Contamination/analysis , Cross-Sectional Studies , Kenya , Caregivers , Health Knowledge, Attitudes, Practice , Edible Grain/chemistry , Growth Disorders
7.
PLoS One ; 18(1): e0277657, 2023.
Article in English | MEDLINE | ID: mdl-36696882

ABSTRACT

BACKGROUND: Accurate and timely diagnosis is essential in limiting the spread of SARS-CoV-2 infection. The reference standard, rRT-PCR, requires specialized laboratories, costly reagents, and a long turnaround time. Antigen RDTs provide a feasible alternative to rRT-PCR since they are quick, relatively inexpensive, and do not require a laboratory. The WHO requires that Ag RDTs have a sensitivity ≥80% and specificity ≥97%. METHODS: This evaluation was conducted at 11 health facilities in Kenya between March and July 2021. We enrolled persons of any age with respiratory symptoms and asymptomatic contacts of confirmed COVID-19 cases. We collected demographic and clinical information and two nasopharyngeal specimens from each participant for Ag RDT testing and rRT-PCR. We calculated the diagnostic performance of the Panbio™ Ag RDT against the US Centers for Disease Control and Prevention's (CDC) rRT-PCR test. RESULTS: We evaluated the Ag RDT in 2,245 individuals where 551 (24.5%, 95% CI: 22.8-26.3%) tested positive by rRT-PCR. Overall sensitivity of the Ag RDT was 46.6% (95% CI: 42.4-50.9%), specificity 98.5% (95% CI: 97.8-99.0%), PPV 90.8% (95% CI: 86.8-93.9%) and NPV 85.0% (95% CI: 83.4-86.6%). Among symptomatic individuals, sensitivity was 60.6% (95% CI: 54.3-66.7%) and specificity was 98.1% (95% CI: 96.7-99.0%). Among asymptomatic individuals, sensitivity was 34.7% (95% CI 29.3-40.4%) and specificity was 98.7% (95% CI: 97.8-99.3%). In persons with onset of symptoms <5 days (594/876, 67.8%), sensitivity was 67.1% (95% CI: 59.2-74.3%), and 53.3% (95% CI: 40.0-66.3%) among those with onset of symptoms >7 days (157/876, 17.9%). The highest sensitivity was 87.0% (95% CI: 80.9-91.8%) in symptomatic individuals with cycle threshold (Ct) values ≤30. CONCLUSION: The overall sensitivity and NPV of the Panbio™ Ag RDT were much lower than expected. The specificity of the Ag RDT was high and satisfactory; therefore, a positive result may not require confirmation by rRT-PCR. The kit may be useful as a rapid screening tool only for symptomatic patients in high-risk settings with limited access to rRT-PCR. A negative result should be interpreted based on clinical and epidemiological information and may require retesting by rRT-PCR.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Health Facilities , Kenya/epidemiology , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
8.
Npj Viruses ; 1(1): 6, 2023.
Article in English | MEDLINE | ID: mdl-38665239

ABSTRACT

Rhinoviruses (RV), common human respiratory viruses, exhibit significant antigenic diversity, yet their dynamics across distinct social structures remain poorly understood. Our study delves into RV dynamics within Kenya by analysing VP4/2 sequences across four different social structures: households, a public primary school, outpatient clinics in the Kilifi Health and Demographics Surveillance System (HDSS), and countrywide hospital admissions and outpatients. The study revealed the greatest diversity of RV infections at the countrywide level (114 types), followed by the Kilifi HDSS (78 types), the school (47 types), and households (40 types), cumulatively representing >90% of all known RV types. Notably, RV diversity correlated directly with the size of the population under observation, and several RV type variants occasionally fuelled RV infection waves. Our findings highlight the critical role of social structures in shaping RV dynamics, information that can be leveraged to enhance public health strategies. Future research should incorporate whole-genome analysis to understand fine-scale evolution across various social structures.

9.
Emerg Infect Dis ; 28(13): S159-S167, 2022 12.
Article in English | MEDLINE | ID: mdl-36502403

ABSTRACT

Kenya's Ministry of Health (MOH) and the US Centers for Disease Control and Prevention in Kenya (CDC Kenya) have maintained a 40-year partnership during which measures were implemented to prevent, detect, and respond to disease threats. During the COVID-19 pandemic, the MOH and CDC Kenya rapidly responded to mitigate disease impact on Kenya's 52 million residents. We describe activities undertaken jointly by the MOH and CDC Kenya that lessened the effects of COVID-19 during 5 epidemic waves from March through December 2021. Activities included establishing national and county-level emergency operations centers and implementing workforce development and deployment, infection prevention and control training, laboratory diagnostic advancement, enhanced surveillance, and information management. The COVID-19 pandemic provided fresh impetus for the government of Kenya to establish a national public health institute, launched in January 2022, to consolidate its public health activities and counter COVID-19 and future infectious, vaccine-preventable, and emerging zoonotic diseases.


Subject(s)
COVID-19 , Public Health , Animals , United States , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Centers for Disease Control and Prevention, U.S. , Zoonoses/prevention & control
10.
Emerg Infect Dis ; 28(13): S34-S41, 2022 12.
Article in English | MEDLINE | ID: mdl-36502419

ABSTRACT

Existing acute febrile illness (AFI) surveillance systems can be leveraged to identify and characterize emerging pathogens, such as SARS-CoV-2, which causes COVID-19. The US Centers for Disease Control and Prevention collaborated with ministries of health and implementing partners in Belize, Ethiopia, Kenya, Liberia, and Peru to adapt AFI surveillance systems to generate COVID-19 response information. Staff at sentinel sites collected epidemiologic data from persons meeting AFI criteria and specimens for SARS-CoV-2 testing. A total of 5,501 patients with AFI were enrolled during March 2020-October 2021; >69% underwent SARS-CoV-2 testing. Percentage positivity for SARS-CoV-2 ranged from 4% (87/2,151, Kenya) to 19% (22/115, Ethiopia). We show SARS-CoV-2 testing was successfully integrated into AFI surveillance in 5 low- to middle-income countries to detect COVID-19 within AFI care-seeking populations. AFI surveillance systems can be used to build capacity to detect and respond to both emerging and endemic infectious disease threats.


Subject(s)
COVID-19 , Communicable Diseases , United States , Humans , COVID-19/epidemiology , SARS-CoV-2 , COVID-19 Testing , Fever/epidemiology
11.
Sci Rep ; 12(1): 22290, 2022 12 24.
Article in English | MEDLINE | ID: mdl-36566323

ABSTRACT

We estimated the prevalence of extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE), carbapenem-resistant Enterobacterales (CRE), and methicillin-resistant Staphylococcus aureus (MRSA) in communities and hospitals in Kenya to identify human colonization with multidrug-resistant bacteria. Nasal and fecal specimen were collected from inpatients and community residents in Nairobi (urban) and Siaya (rural) counties. Swabs were plated on chromogenic agar to presumptively identify ESCrE, CRE and MRSA isolates. Confirmatory identification and antibiotic susceptibility testing were done using the VITEK®2 instrument. A total of 1999 community residents and 1023 inpatients were enrolled between January 2019 and March 2020. ESCrE colonization was higher in urban than rural communities (52 vs. 45%; P = 0.013) and in urban than rural hospitals (70 vs. 63%; P = 0.032). Overall, ESCrE colonization was ~ 18% higher in hospitals than in corresponding communities. CRE colonization was higher in hospital than community settings (rural: 7 vs. 1%; urban: 17 vs. 1%; with non-overlapping 95% confidence intervals), while MRSA was rarely detected (≤ 3% overall). Human colonization with ESCrE and CRE was common, particularly in hospitals and urban settings. MRSA colonization was uncommon. Evaluation of risk factors and genetic mechanisms of resistance can guide prevention and control efforts tailored to different environments.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Prevalence , Kenya/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Hospitals , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
12.
PLOS Glob Public Health ; 2(9): e0000951, 2022.
Article in English | MEDLINE | ID: mdl-36962806

ABSTRACT

We investigated the first 152 laboratory-confirmed SARS-CoV-2 cases (125 primary and 27 secondary) and their 248 close contacts in Kisumu County, Kenya. Conducted June 10-October 8, 2020, this study included interviews and sample collection at enrolment and 14-21 days later. Median age was 35 years (IQR 28-44); 69.0% reported COVID-19 related symptoms, most commonly cough (60.0%), headache (55.2%), fever (53.3%) and loss of taste or smell (43.8%). One in five were hospitalized, 34.4% >25 years of age had at least one comorbidity, and all deaths had comorbidities. Adults ≥25 years with a comorbidity were 3.15 (95% CI 1.37-7.26) times more likely to have been hospitalized or died than participants without a comorbidity. Infectious comorbidities included HIV, tuberculosis, and malaria, but no current cases of influenza, respiratory syncytial virus, dengue fever, leptospirosis or chikungunya were identified. Thirteen (10.4%) of the 125 primary infections transmitted COVID-19 to 27 close contacts, 158 (63.7%) of whom resided or worked within the same household. Thirty-one percent (4 of 13) of those who transmitted COVID-19 to secondary cases were health care workers; no known secondary transmissions occurred between health care workers. This rapid assessment early in the course of the COVID-19 pandemic identified some context-specific characteristics which conflicted with the national line-listing of cases, and which have been substantiated in the year since. These included over two-thirds of cases reporting the development of symptoms during the two weeks after diagnosis, compared to the 7% of cases reported nationally; over half of cases reporting headaches, and nearly half of all cases reporting loss of taste and smell, none of which were reported at the time by the World Health Organization to be common symptoms. This study highlights the importance of rapid in-depth assessments of outbreaks in understanding the local epidemiology and response measures required.

13.
J Infect Dis ; 225(12): 2097-2105, 2022 06 15.
Article in English | MEDLINE | ID: mdl-32777041

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is an important cause of respiratory illness worldwide; however, burden data on mother-infant pairs remain sparse in sub-Saharan Africa, where human immunodeficiency virus (HIV) is prevalent. We evaluated the impact of maternal HIV infection on the burden of RSV among mothers and their infants in western Kenya. METHODS: We enrolled pregnant women (≤20 weeks' gestation) and followed them and their newborns weekly for up to 3-6 months postpartum, to document cases of acute respiratory illness (ARI). Nasal/oropharyngeal swabs were collected and tested for RSV using polymerase chain reaction. Analyses were stratified by maternal HIV status and incidence was computed per 1000 person-months. RESULTS: Compared to RSV-negative ARI cases, RSV-positive cases were associated with cough, apnea, and hospitalization among infants. RSV incidence per 1000 person-months among mothers was 4.0 (95% confidence interval [CI], 3.2-4.4), and was twice that among the HIV-infected mothers (8.4 [95% CI, 5.7-12.0]) compared to the HIV-uninfected mothers (3.1 [95% CI, 2.3-4.0]). Among infants, incidence per 1000 person-months was 15.4 (95% CI, 12.5-18.8); incidence did not differ by HIV exposure or prematurity. CONCLUSIONS: HIV infection may increase the risk of RSV illness among pregnant women. Future maternal RSV vaccines may have added benefit in areas with high HIV prevalence.


Subject(s)
HIV Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Female , HIV Infections/complications , HIV Infections/epidemiology , Hospitalization , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Pregnancy , Pregnant Women
14.
Clin Infect Dis ; 73(Suppl_5): S351-S359, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34910182

ABSTRACT

BACKGROUND: Minimally invasive tissue sampling (MITS) is an alternative to complete autopsy for determining causes of death. Multiplex molecular testing performed on MITS specimens poses challenges of interpretation, due to high sensitivity and indiscriminate detection of pathogenic, commensal, or contaminating microorganisms. METHODS: MITS was performed on 20 deceased children with respiratory illness, at 10 timepoints up to 88 hours postmortem. Samples were evaluated by multiplex molecular testing on fresh tissues by TaqMan® Array Card (TAC) and by histopathology, special stains, immunohistochemistry (IHC), and molecular testing (PCR) on formalin-fixed, paraffin-embedded (FFPE) tissues. Results were correlated to determine overall pathologic and etiologic diagnoses and to guide interpretation of TAC results. RESULTS: MITS specimens collected up to 3 days postmortem were adequate for histopathologic evaluation and testing. Seven different etiologic agents were detected by TAC in 10 cases. Three cases had etiologic agents detected by FFPE or other methods and not TAC; 2 were agents not present on TAC, and 2 were streptococci that may have been species other than those present on TAC. Result agreement was 43% for TAC and IHC or PCR, and 69% for IHC and PCR. Extraneous TAC results were common, especially when aspiration was present. CONCLUSIONS: TAC can be performed on MITS up to 3 days after death with refrigeration and provides a sensitive method for detection of pathogens but requires careful interpretation in the context of clinicoepidemiologic and histopathologic findings. Interpretation of all diagnostic tests in aggregate to establish overall case diagnoses maximizes the utility of TAC in MITS.


Subject(s)
Specimen Handling , Autopsy , Child , Humans , Immunohistochemistry
15.
Clin Infect Dis ; 73(Suppl_5): S360-S367, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34910183

ABSTRACT

BACKGROUND: We used postmortem minimally invasive tissue sampling (MITS) to assess the effect of time since death on molecular detection of pathogens among respiratory illness-associated deaths. METHODS: Samples were collected from 20 deceased children (aged 1-59 months) hospitalized with respiratory illness from May 2018 through February 2019. Serial lung and/or liver and blood samples were collected using MITS starting soon after death and every 6 hours thereafter for up to 72 hours. Bodies were stored in the mortuary refrigerator for the duration of the study. All specimens were analyzed using customized multipathogen TaqMan® array cards (TACs). RESULTS: We identified a median of 3 pathogens in each child's lung tissue (range, 1-8; n = 20), 3 pathogens in each child's liver tissue (range, 1-4; n = 5), and 2 pathogens in each child's blood specimen (range, 0-4; n = 5). Pathogens were not consistently detected across all collection time points; there was no association between postmortem interval and the number of pathogens detected (P = .43) and no change in TAC cycle threshold value over time for pathogens detected in lung tissue. Human ribonucleoprotein values indicated that specimens collected were suitable for testing throughout the study period. CONCLUSIONS: Results suggest that lung, liver, and blood specimens can be collected using MITS procedures up to 4 days after death in adequately preserved bodies. However, inconsistent pathogen detection in samples needs careful consideration before drawing definitive conclusions on the etiologic causes of death.


Subject(s)
Lung , Specimen Handling , Autopsy/methods , Cause of Death , Child , Child, Preschool , Data Collection , Humans , Infant , Specimen Handling/methods
16.
Clin Infect Dis ; 73(Suppl_3): S218-S228, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34472577

ABSTRACT

BACKGROUND: Lower respiratory tract infections are a leading cause of death in young children, but few studies have collected the specimens needed to define the role of specific causes. The Child Health and Mortality Prevention Surveillance (CHAMPS) platform aims to investigate causes of death in children aged <5 years in high-mortality rate settings, using postmortem minimally invasive tissue sampling and other advanced diagnostic techniques. We examined findings for deaths identified in CHAMPS sites in 7 countries in sub-Saharan Africa and south Asia to evaluate the role of respiratory syncytial virus (RSV). METHODS: We included deaths that occurred between December 2016 and December 2019. Panels determined causes of deaths by reviewing all available data including pathological results from minimally invasive tissue sampling, polymerase chain reaction screening for multiple infectious pathogens in lung tissue, nasopharyngeal swab, blood, and cerebrospinal fluid samples, clinical information from medical records, and verbal autopsies. RESULTS: We evaluated 1213 deaths, including 695 in neonates (aged <28 days), 283 in infants (28 days to <12 months), and 235 in children (12-59 months). RSV was detected in postmortem specimens in 67 of 1213 deaths (5.5%); in 24 deaths (2.0% of total), RSV was determined to be a cause of death, and it contributed to 5 other deaths. Younger infants (28 days to <6 months of age) accounted for half of all deaths attributed to RSV; 6.5% of all deaths in younger infants were attributed to RSV. RSV was the underlying and only cause in 4 deaths; the remainder (n = 20) had a median of 2 (range, 1-5) other conditions in the causal chain. Birth defects (n = 8) and infections with other pathogens (n = 17) were common comorbid conditions. CONCLUSIONS: RSV is an important cause of child deaths, particularly in young infants. These findings add to the substantial body of literature calling for better treatment and prevention options for RSV in high-mortality rate settings.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Child Health , Child Mortality , Child, Preschool , Humans , Infant , Infant, Newborn , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Tract Infections/epidemiology
17.
Emerg Infect Dis ; 27(9): 2497-2499, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34193338

ABSTRACT

We determined incidence of severe acute respiratory syndrome coronavirus 2 and influenza virus infections among pregnant and postpartum women and their infants in Kenya during 2020-2021. Incidence of severe acute respiratory syndrome coronavirus 2 was highest among pregnant women, followed by postpartum women and infants. No influenza virus infections were identified.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Kenya/epidemiology , Postpartum Period , Pregnancy , Pregnancy Complications, Infectious/epidemiology , SARS-CoV-2
18.
Pediatr Infect Dis J ; 40(8): 715-722, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33967229

ABSTRACT

BACKGROUND: In resource-limited settings, acute respiratory infections continue to be the leading cause of death in young children. We conducted postmortem investigations in children <5 years hospitalized with a clinical diagnosis of respiratory disease at Kenya's largest referral hospital. METHODS: We collected respiratory and other tissues postmortem to examine pathologic processes using histology, molecular and immunohistochemistry assays. Nasopharyngeal, trachea, bronchi and lung specimens were tested using 21-target respiratory pathogen real-time reverse transcription polymerase chain reaction assays deployed on Taqman Array Cards. Expert panels reviewed all findings to determine causes of death and associated pathogens. RESULTS: From 2014 to 2015, we investigated 64 pediatric deaths (median age 7 months). Pneumonia was determined as cause of death in 70% (42/52) of cases where death was associated with an infectious disease process. The main etiologies of pneumonia deaths were respiratory syncytial virus (RSV) (n = 7, 19%), Pneumocystis jirovecii (n = 7, 19%), influenza A (n = 5, 14%) and Streptococcus pneumoniae (n = 5, 14%)-10% of cases had multi-pathogen involvement. Among the other 10 deaths associated with a nonpneumonia infectious process, 4 did not have an etiology assigned, the others were associated with miliary tuberculosis (2), cerebral thrombosis due to HIV (1), Enterobacteriaceae (1), rotavirus (1), and 1 case of respiratory infection with severe hypokalemia associated with RSV. CONCLUSIONS: In spite of well-established vaccination programs in Kenya, some deaths were still vaccine preventable. Accelerated development of RSV monoclonal antibodies and vaccines, introduction of seasonal influenza vaccination, and maintenance or improved uptake of existing vaccines can contribute to further reductions in childhood mortality.


Subject(s)
Child, Hospitalized , Pneumonia/epidemiology , Pneumonia/microbiology , Pneumonia/mortality , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Autopsy , Cause of Death , Child, Preschool , Diagnosis , Female , Humans , Infant , Kenya/epidemiology , Male
19.
PLoS Negl Trop Dis ; 15(2): e0009049, 2021 02.
Article in English | MEDLINE | ID: mdl-33524052

ABSTRACT

BACKGROUND: Brucellosis occurs globally with highly variable incidence in humans from very low in North America and Western Europe to high in the Middle East and Asia. There are few data in Sub-Saharan Africa. This study estimated the incidence of human brucellosis in a pastoralist community in Kenya. METHODS: Between February 2015 and January 2016, we enrolled persons living in randomly selected households in Kajiado County. Free health care was offered at three facilities in the study area. Those who met the study clinical case definition completed a standardized questionnaire on demographics, clinical history and presentation. A blood sample was collected and tested by Rose Bengal test (RBT), then later tested at the Kenya Medical Research Institute laboratory for Brucella IgG and IgM by ELISA. Those who tested positive by both RBT and ELISA (IgG or IgM antibodies) were classified as confirmed while those that only tested positive for IgG or IgM antibodies were classified as probable. Further, sera were tested by polymerase chain reaction using a TaqMan Array Card (TAC) for a panel of pathogens causing AFI including Brucella spp. Annual incidence of brucellosis was calculated as the number of confirmed cases in one year/total number in the study population. RESULTS: We enrolled a cohort of 4746 persons in 804 households. Over half (52.3%) were males and the median age was 18 years (Interquartile range (IQR) 9 months- 32 years). A total of 236 patients were enrolled at three health facilities; 64% were females and the median age was 40.5 years (IQR 28-53 years). Thirty-nine (16.5%) were positive for Brucella antibodies by IgG ELISA, 5/236 (2.1%) by IgM ELISA and 4/236 (1.7%) by RBT. Ten percent (22/217) were positive by TAC. We confirmed four (1.7%) brucellosis cases giving an annual incidence of 84/100,000 persons/year (95% CI 82, 87). The incidence did not significantly vary by gender, age and location of residence. CONCLUSION: We report a high incidence of brucellosis in humans among members of this pastoralist community. Brucellosis was the most common cause of febrile illness in this community.


Subject(s)
Brucella/immunology , Brucellosis/diagnosis , Brucellosis/epidemiology , Serologic Tests/methods , Adolescent , Adult , Antibodies, Bacterial/blood , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Kenya/epidemiology , Male , Polymerase Chain Reaction , Rural Population , Surveys and Questionnaires , Young Adult
20.
Influenza Other Respir Viruses ; 15(2): 195-201, 2021 03.
Article in English | MEDLINE | ID: mdl-33305543

ABSTRACT

Understanding respiratory syncytial virus (RSV) circulation patterns is necessary to guide the timing of limited-duration interventions such as vaccines. We describe RSV circulation over multiple seasons in three distinct counties of Kenya during 2006-2018. Kilifi and Siaya counties each had consistent but distinct RSV seasonality, lasting on average 18-22 weeks. Based on data from available years, RSV did not have a clear pattern of circulation in Nairobi. This information can help guide the timing of vaccines and immunoprophylaxis products that are under development.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Infant , Kenya/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...