Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecohealth ; 17(1): 41-51, 2020 03.
Article in English | MEDLINE | ID: mdl-31811599

ABSTRACT

Upsurge of antibiotic resistance in wildlife poses unprecedented threat to wildlife conservation. Surveillance of antibiotic resistance at the human-wildlife interface is therefore needed. We evaluated differences in antibiotic resistance of Escherichia coli isolates from human and the endangered black rhinoceros in Lambwe Valley, Kenya. We used standard microbiological techniques to carry out susceptibility assays using eight antibiotics of clinical and veterinary importance. Standard PCR method was used to characterize antibiotic resistance genes. There was no difference in resistance between E. coli isolates from human and those from rhinoceros (U = 25, p = 0.462). However, higher resistance in isolates from humans was noted for cotrimoxazole (p = 0.000, OR = 0.101), ceftriaxone (p = 0.005, OR = 0.113) and amoxicillin/clavulanic acid (p = 0.017, OR = 0.258), whereas isolates from rhinoceros showed higher gentamicin resistance (p = 0.001, OR = 10.154). Multi-drug resistance phenotype was 69.0% in humans and 43.3% in rhinoceros. Isolates from both species contained blaTEM, tetA, tetB, dfrA1 and sul1 genes. Resistance profiles in the two species suggest potential for cross-transfer of resistance genes or exposure to comparable selective pressure and call for a multi-sectorial action plan on surveillance of antibiotic resistance at the human-wildlife interface. Genome-wide studies are needed to explicate the direction of transfer of genes that confer antibiotic resistance at the human-wildlife interface.


Subject(s)
Drug Resistance, Microbial/genetics , Escherichia coli , Perissodactyla/microbiology , Animals , Anti-Bacterial Agents , Humans , Kenya , Microbial Sensitivity Tests
2.
J Infect Dev Ctries ; 8(11): 1381-90, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25390050

ABSTRACT

INTRODUCTION: Salmonella enterica subspecies enterica serovar Choleraesuis is a host-adapted, facultative, intracellular pathogen that causes swine paratyphoid. Its antimicrobial resistance presents a challenge to feed manufacturing industries. However, stopping antibiotics in animal feed would have economic implications for the industry. METHODOLOGY: Conventional microbial methods for isolation and identification of S. Choleraesuis were employed. The isolates were subjected to screening against 17 antimicrobial agents and genotyping of resistance markers by PCR. The data were then analyzed and presented in percentages. RESULTS: Phenotypically, 43 out of 95 isolates showed multidrug resistance. Among the 17 antibiotics tested, resistance was observed as follows: sulphonamides (45.2%), nalidixic acid (44.25%), tetracycline (42%), ampicillin (36.8%), erythromycin (34.7%), carbenicillin (31.5%), chrolamphenical (28.4%), gentamicin (27.3%), kanamycin (24.2%), spectinomycin (21%), sulfamethoxazole-trimethoprim (16.8%), streptomycin (12.6%), cephalothion (8.4%), ofloxacin (5.2%), ciprofloxacin (4.2%), and norfloxacin (4.2%). Fifty-two isolates were susceptible to the antimicrobial agents tested. A total of 3.1% of the isolates had the integron gene pattern combination of dfrA2-aadA2 (2100 bp), dfrA12 (2100 bp); 4.2% had dfrA12-aadA2-sulI (2100 bp); 2.1% had dfrA12-aadA2 (2100 bp); and 1% had dfrA2-aadA2-sulI (2100 bp), oxa1-aadA2 (1500 bp), dfrA12-aadA2-sulI, and blaPSE (2100 bp). CONCLUSIONS: The isolated S. Choleraesuis were resistant to more than 10% of the antimicrobial agents used in this study. Appropriate surveillance is warranted to gain more information about the epidemiology, as stopping antibiotics in animal feed would have economic implications for the industry.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Salmonella Infections, Animal/microbiology , Salmonella arizonae/drug effects , Swine , Animals , Genotype , Integrons , Kenya , Microbial Sensitivity Tests , Polymerase Chain Reaction , Salmonella arizonae/genetics , Salmonella arizonae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...