Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2312031121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38194461

ABSTRACT

The quantification and characterization of aggregated α-synuclein in clinical samples offer immense potential toward diagnosing, treating, and better understanding neurodegenerative synucleinopathies. Here, we developed digital seed amplification assays to detect single α-synuclein aggregates by partitioning the reaction into microcompartments. Using pre-formed α-synuclein fibrils as reaction seeds, we measured aggregate concentrations as low as 4 pg/mL. To improve our sensitivity, we captured aggregates on antibody-coated magnetic beads before running the amplification reaction. By first characterizing the pre-formed fibrils with transmission electron microscopy and size exclusion chromatography, we determined the specific aggregates targeted by each assay platform. Using brain tissue and cerebrospinal fluid samples collected from patients with Parkinson's Disease and multiple system atrophy, we demonstrated that the assay can detect endogenous pathological α-synuclein aggregates. Furthermore, as another application for these assays, we studied the inhibition of α-synuclein aggregation in the presence of small-molecule inhibitors and used a custom image analysis pipeline to quantify changes in aggregate growth and filament morphology.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein , Antibodies
2.
ACS Synth Biol ; 11(1): 448-463, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34981924

ABSTRACT

The raging COVID-19 pandemic has created an unprecedented demand for frequent and widespread testing to limit viral transmission. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has emerged as a promising diagnostic platform for rapid detection of SARS-CoV-2, in part because it can be performed with simple instrumentation. However, isothermal amplification methods frequently yield spurious amplicons even in the absence of a template. Consequently, RT-LAMP assays can produce false positive results when they are based on generic intercalating dyes or pH-sensitive indicators. Here, we report the development of a sensitive RT-LAMP assay that leverages on a novel sequence-specific probe to guard against spurious amplicons. We show that our optimized fluorescent assay, termed LANTERN, takes only 30 min to complete and can be applied directly on swab or saliva samples. Furthermore, utilizing clinical RNA samples from 52 patients with COVID-19 infection and 21 healthy individuals, we demonstrate that our diagnostic test exhibits a specificity and positive predictive value of 95% with a sensitivity of 8 copies per reaction. Hence, our new probe-based RT-LAMP assay can serve as an inexpensive method for point-of-need diagnosis of COVID-19 and other infectious diseases.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/genetics , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics , Humans
3.
Nat Commun ; 12(1): 1739, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741959

ABSTRACT

Extensive testing is essential to break the transmission of SARS-CoV-2, which causes the ongoing COVID-19 pandemic. Here, we present a CRISPR-based diagnostic assay that is robust to viral genome mutations and temperature, produces results fast, can be applied directly on nasopharyngeal (NP) specimens without RNA purification, and incorporates a human internal control within the same reaction. Specifically, we show that the use of an engineered AsCas12a enzyme enables detection of wildtype and mutated SARS-CoV-2 and allows us to perform the detection step with loop-mediated isothermal amplification (LAMP) at 60-65 °C. We also find that the use of hybrid DNA-RNA guides increases the rate of reaction, enabling our test to be completed within 30 minutes. Utilizing clinical samples from 72 patients with COVID-19 infection and 57 healthy individuals, we demonstrate that our test exhibits a specificity and positive predictive value of 100% with a sensitivity of 50 and 1000 copies per reaction (or 2 and 40 copies per microliter) for purified RNA samples and unpurified NP specimens respectively.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Guide, Kinetoplastida , SARS-CoV-2/genetics , Bacterial Proteins/genetics , COVID-19/virology , CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Endodeoxyribonucleases/genetics , Humans , Molecular Diagnostic Techniques/methods , Mutation , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , Sensitivity and Specificity
4.
ACS Synth Biol ; 8(4): 708-723, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30865830

ABSTRACT

The availability of different host chassis will greatly expand the range of applications in synthetic biology. Members of the Acetobacteraceae family of Gram-negative bacteria form an attractive class of nonmodel microorganisms that can be exploited to produce industrial chemicals, food and beverage, and biomaterials. One such biomaterial is bacterial cellulose, which is a strong and ultrapure natural polymer used in tissue engineering scaffolds, wound dressings, electronics, food additives, and other products. However, despite the potential of Acetobacteraceae in biotechnology, there has been considerably little effort to fundamentally reprogram the bacteria for enhanced performance. One limiting factor is the lack of a well-characterized, comprehensive toolkit to control expression of genes in biosynthetic pathways and regulatory networks to optimize production and cell viability. Here, we address this shortcoming by building an expanded genetic toolkit for synthetic biology applications in Acetobacteraceae. We characterized the performance of multiple natural and synthetic promoters, ribosome binding sites, terminators, and degradation tags in three different strains, namely, Gluconacetobacter xylinus ATCC 700178, Gluconacetobacter hansenii ATCC 53582, and Komagataeibacter rhaeticus iGEM. Our quantitative data revealed strain-specific and common design rules for the precise control of gene expression in these industrially relevant bacterial species. We further applied our tools to synthesize a biodegradable cellulose-chitin copolymer, adjust the structure of the cellulose film produced, and implement CRISPR interference for ready down-regulation of gene expression. Collectively, our genetic parts will enable the efficient engineering of Acetobacteraceae bacteria for the biomanufacturing of cellulose-based materials and other commercially valuable products.


Subject(s)
Acetobacteraceae/genetics , Gene Expression/genetics , Beverages/microbiology , Biocompatible Materials/metabolism , Biosynthetic Pathways/genetics , Biotechnology/methods , Cellulose/genetics , Chitin/genetics , Food , Synthetic Biology/methods , Tissue Engineering/methods
5.
Genome Biol ; 19(1): 62, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29843790

ABSTRACT

BACKGROUND: While CRISPR-Cas systems hold tremendous potential for engineering the human genome, it is unclear how well each system performs against one another in both non-homologous end joining (NHEJ)-mediated and homology-directed repair (HDR)-mediated genome editing. RESULTS: We systematically compare five different CRISPR-Cas systems in human cells by targeting 90 sites in genes with varying expression levels. For a fair comparison, we select sites that are either perfectly matched or have overlapping seed regions for Cas9 and Cpf1. Besides observing a trade-off between cleavage efficiency and target specificity for these natural endonucleases, we find that the editing activities of the smaller Cas9 enzymes from Staphylococcus aureus (SaCas9) and Neisseria meningitidis (NmCas9) are less affected by gene expression than the other larger Cas proteins. Notably, the Cpf1 nucleases from Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006 (AsCpf1 and LbCpf1, respectively) are able to perform precise gene targeting efficiently across multiple genomic loci using single-stranded oligodeoxynucleotide (ssODN) donor templates with homology arms as short as 17 nucleotides. Strikingly, the two Cpf1 nucleases exhibit a preference for ssODNs of the non-target strand sequence, while the popular Cas9 enzyme from Streptococcus pyogenes (SpCas9) exhibits a preference for ssODNs of the target strand sequence instead. Additionally, we find that the HDR efficiencies of Cpf1 and SpCas9 can be further improved by using asymmetric donors with longer arms 5' of the desired DNA changes. CONCLUSIONS: Our work delineates design parameters for each CRISPR-Cas system and will serve as a useful reference for future genome engineering studies.


Subject(s)
CRISPR-Cas Systems , Gene Editing , DNA End-Joining Repair , DNA Repair , DNA, Single-Stranded/metabolism , Humans , Oligodeoxyribonucleotides , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...