Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 11(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205927

ABSTRACT

The use of deoxyribonucleic acid (DNA) hybridization to detect disease-related gene expression is a valuable diagnostic tool. An ion-sensitive field-effect transistor (ISFET) with a graphene layer has been utilized for detecting DNA hybridization. Silicene is a two-dimensional silicon allotrope with structural properties similar to graphene. Thus, it has recently experienced intensive scientific research interest due to its unique electrical, mechanical, and sensing characteristics. In this paper, we proposed an ISFET structure with silicene and electrolyte layers for the label-free detection of DNA hybridization. When DNA hybridization occurs, it changes the ion concentration in the surface layer of the silicene and the pH level of the electrolyte solution. The process also changes the quantum capacitance of the silicene layer and the electrical properties of the ISFET device. The quantum capacitance and the corresponding resonant frequency readout of the silicene and graphene are compared. The performance evaluation found that the changes in quantum capacitance, resonant frequency, and tuning ratio indicate that the sensitivity of silicene is much more effective than graphene.


Subject(s)
DNA Probes , Biosensing Techniques , Computer Simulation , DNA/chemistry , Electric Capacitance , Graphite/chemistry , Silicon/chemistry , Transistors, Electronic
2.
Sci Rep ; 8(1): 9874, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29959367

ABSTRACT

Increasing bandwidth demands in optical communications necessitates the introduction of mode-division multiplexing (MDM) on top of the existing wavelength-division multiplexing (WDM) systems. Simultaneous management of both multiplexing systems will be a complex task, and there is the possibility of signal degradation through modal crosstalk. Here, we propose graphene-on-silicon (GOS) integrated waveguide mode filters to suppress the propagation of spurious waveguide modes at the telecommunications wavelength. Graphene's high fabrication tolerance potentially enables surgical tailoring and deployment at targeted segments on the waveguide to absorb the undesired TE0 or TE1 modes. The proposed GOS waveguide mode filters can potentially improve the performance and reduce the device footprint of MDM systems.

3.
Proc Math Phys Eng Sci ; 473(2206): 20170433, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29118665

ABSTRACT

The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

4.
Sci Rep ; 7(1): 12748, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28986574

ABSTRACT

The hallmark of silicon photonics is in its low loss at the telecommunications wavelength, economic advantages and compatibility with CMOS design and fabrication processes. These advantages are however impeded by its relatively low Kerr coefficient that constrains the power and size scaling of nonlinear all-optical silicon photonic devices. Graphene, with its unprecedented high Kerr coefficient and uniquely thin-film structure, makes a good nonlinear material to be easily integrated onto all-optical silicon photonic waveguide devices. We study the design of all-optical graphene-on-silicon (GOS) waveguide modulators, and find the optimized performance of MW cm-2 in optical pump intensities and sub-mm device lengths. The improvements brought by the integration of graphene onto silicon photonic waveguides could bring us a step closer to realising compact all-optical control on a single chip.

5.
Opt Express ; 25(17): 20477-20485, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041728

ABSTRACT

The terahertz band is an increasingly important spectrum in a wide range of applications from bioimaging and medical diagnostics to security and wireless communications. We propose a tunable terahertz coherent radiation source based on graphene plasmon-induced transition radiation. The transition radiation in terahertz regime arises from the graphene plasmons, which are excited by a normally incident bunched electron beam. We analyze the field-intensities and spectral-angular distributions of the transition radiation with respect to Fermi energy, substrate dielectric permittivity, and electron bunch energy for both the coherent and incoherent radiation. The effect of electron bunching on the radiation pattern is discussed. The mechanism of plasmon frequency-selective transition radiation is discovered.

6.
Sci Rep ; 6: 27120, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27272558

ABSTRACT

CMOS-compatible nonlinear optics platforms with high Kerr nonlinearity facilitate the generation of broadband spectra based on self-phase modulation. Our ultra - silicon rich nitride (USRN) platform is designed to have a large nonlinear refractive index and low nonlinear losses at 1.55 µm for the facilitation of wideband spectral broadening. We investigate the ultrafast spectral characteristics of USRN waveguides with 1-mm-length, which have high nonlinear parameters (γ ∼ 550 W(-1)/m) and anomalous dispersion at 1.55 µm wavelength of input light. USRN add-drop ring resonators broaden output spectra by a factor of 2 compared with the bandwidth of input fs laser with the highest quality factors of 11000 and 15000. Two - fold self phase modulation induced spectral broadening is observed using waveguides only 430 µm in length, whereas a quadrupling of the output bandwidth is observed with USRN waveguides with a 1-mm-length. A broadening factor of around 3 per 1 mm length is achieved in the USRN waveguides, a value which is comparatively larger than many other CMOS-compatible platforms.

7.
Opt Lett ; 39(6): 1629-32, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24690855

ABSTRACT

The versatile control of graphene's plasmonic modes via an external gate-voltage inspires us to design efficient electro-optical graphene plasmonic logic gates at the midinfrared wavelengths. We show that these devices are superior to the conventional optical logic gates because the former possess cut-off states and interferometric effects. Moreover, the designed six basic logic gates (i.e., NOR/AND, NAND/OR, XNOR/XOR) achieved not only ultracompact size lengths of less than λ/28 with respect to the operating wavelength of 10 µm, but also a minimum extinction ratio as high as 15 dB. These graphene plasmonic logic gates are potential building blocks for future nanoscale midinfrared photonic integrated circuits.


Subject(s)
Electronics/instrumentation , Graphite/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Graphite/radiation effects , Light
8.
Opt Express ; 19(18): 17075-85, 2011 Aug 29.
Article in English | MEDLINE | ID: mdl-21935068

ABSTRACT

A novel plasmonic waveguide-coupled nanocavity with a monopole antenna is proposed to localize the optical power from a hybrid plasmonic waveguide and subsequently convert it into electrical current. The nanocavity is designed as a Fabry-Pérot waveguide resonator, while the monopole antenna is made of a metallic nanorod directly mounted onto the metallic part of the waveguide terminal which acts as the conducting ground. The nanocavity coincides with the antenna feed sandwiched in between the antenna and the ground. Maximum power from the waveguide can be coupled into, and absorbed in the nanocavity by means of the field resonance in the antenna as well as in the nanocavity. Simulation results show that 42% optical power from the waveguide can be absorbed in a germanium filled nanocavity with a nanoscale volume of 220 × 150 × 60 nm3. The design may find applications in nanoscale photo-detection, subwavelength light focusing and manipulating, as well as sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...